Add new SparseEncoder model
Browse files- README.md +537 -0
- config_sentence_transformers.json +14 -0
- document_0_MLMTransformer/config.json +23 -0
- document_0_MLMTransformer/model.safetensors +3 -0
- document_0_MLMTransformer/sentence_bert_config.json +4 -0
- document_0_MLMTransformer/special_tokens_map.json +7 -0
- document_0_MLMTransformer/tokenizer.json +0 -0
- document_0_MLMTransformer/tokenizer_config.json +56 -0
- document_0_MLMTransformer/vocab.txt +0 -0
- document_1_SpladePooling/config.json +5 -0
- modules.json +8 -0
- query_0_SparseStaticEmbedding/config.json +3 -0
- query_0_SparseStaticEmbedding/model.safetensors +3 -0
- query_0_SparseStaticEmbedding/special_tokens_map.json +7 -0
- query_0_SparseStaticEmbedding/tokenizer.json +0 -0
- query_0_SparseStaticEmbedding/tokenizer_config.json +56 -0
- query_0_SparseStaticEmbedding/vocab.txt +0 -0
- router_config.json +20 -0
README.md
ADDED
@@ -0,0 +1,537 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sparse-encoder
|
8 |
+
- sparse
|
9 |
+
- asymmetric
|
10 |
+
- inference-free
|
11 |
+
- splade
|
12 |
+
- generated_from_trainer
|
13 |
+
- dataset_size:9000
|
14 |
+
- loss:SpladeLoss
|
15 |
+
- loss:SparseMultipleNegativesRankingLoss
|
16 |
+
- loss:FlopsLoss
|
17 |
+
- dataset_size:89000
|
18 |
+
base_model: distilbert/distilbert-base-uncased
|
19 |
+
widget:
|
20 |
+
- text: Blank Neoprene Water Bottle Coolies (Variety Color 10 Pack)
|
21 |
+
- text: Dream Spa 3-way 8-Setting Rainfall Shower Head and Handheld Shower Combo (Chrome).
|
22 |
+
Use Luxury 7-inch Rain Showerhead or 7-Function Hand Shower for Ultimate Spa Experience!
|
23 |
+
- text: ¿Está disponible el nuevo iPhone 7 Plus?
|
24 |
+
- text: Naipo Back Massager Massage Chair Vibrating Car Seat Cushion for Back, Neck,
|
25 |
+
and Thigh with 8 Motor Vibrations 4 Modes 3 Speed Heating at Home Office Car
|
26 |
+
- text: Pizuna 400 Thread Count Cotton Fitted-Sheet Queen Size White 1pc, 100% Long
|
27 |
+
Staple Cotton Sateen Fitted Bed Sheet With All Around Elastic Deep Pocket Queen
|
28 |
+
Sheets Fit Up to 15Inch (White Fitted Sheet)
|
29 |
+
pipeline_tag: feature-extraction
|
30 |
+
library_name: sentence-transformers
|
31 |
+
metrics:
|
32 |
+
- dot_accuracy@1
|
33 |
+
- dot_accuracy@3
|
34 |
+
- dot_accuracy@5
|
35 |
+
- dot_accuracy@10
|
36 |
+
- dot_precision@1
|
37 |
+
- dot_precision@3
|
38 |
+
- dot_precision@5
|
39 |
+
- dot_precision@10
|
40 |
+
- dot_recall@1
|
41 |
+
- dot_recall@3
|
42 |
+
- dot_recall@5
|
43 |
+
- dot_recall@10
|
44 |
+
- dot_ndcg@10
|
45 |
+
- dot_mrr@10
|
46 |
+
- dot_map@100
|
47 |
+
- query_active_dims
|
48 |
+
- query_sparsity_ratio
|
49 |
+
- corpus_active_dims
|
50 |
+
- corpus_sparsity_ratio
|
51 |
+
model-index:
|
52 |
+
- name: Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions
|
53 |
+
tuples
|
54 |
+
results:
|
55 |
+
- task:
|
56 |
+
type: sparse-information-retrieval
|
57 |
+
name: Sparse Information Retrieval
|
58 |
+
dataset:
|
59 |
+
name: NanoMSMARCO
|
60 |
+
type: NanoMSMARCO
|
61 |
+
metrics:
|
62 |
+
- type: dot_accuracy@1
|
63 |
+
value: 0.3
|
64 |
+
name: Dot Accuracy@1
|
65 |
+
- type: dot_accuracy@3
|
66 |
+
value: 0.58
|
67 |
+
name: Dot Accuracy@3
|
68 |
+
- type: dot_accuracy@5
|
69 |
+
value: 0.66
|
70 |
+
name: Dot Accuracy@5
|
71 |
+
- type: dot_accuracy@10
|
72 |
+
value: 0.76
|
73 |
+
name: Dot Accuracy@10
|
74 |
+
- type: dot_precision@1
|
75 |
+
value: 0.3
|
76 |
+
name: Dot Precision@1
|
77 |
+
- type: dot_precision@3
|
78 |
+
value: 0.19333333333333336
|
79 |
+
name: Dot Precision@3
|
80 |
+
- type: dot_precision@5
|
81 |
+
value: 0.132
|
82 |
+
name: Dot Precision@5
|
83 |
+
- type: dot_precision@10
|
84 |
+
value: 0.07600000000000001
|
85 |
+
name: Dot Precision@10
|
86 |
+
- type: dot_recall@1
|
87 |
+
value: 0.3
|
88 |
+
name: Dot Recall@1
|
89 |
+
- type: dot_recall@3
|
90 |
+
value: 0.58
|
91 |
+
name: Dot Recall@3
|
92 |
+
- type: dot_recall@5
|
93 |
+
value: 0.66
|
94 |
+
name: Dot Recall@5
|
95 |
+
- type: dot_recall@10
|
96 |
+
value: 0.76
|
97 |
+
name: Dot Recall@10
|
98 |
+
- type: dot_ndcg@10
|
99 |
+
value: 0.5302210774188797
|
100 |
+
name: Dot Ndcg@10
|
101 |
+
- type: dot_mrr@10
|
102 |
+
value: 0.45638095238095233
|
103 |
+
name: Dot Mrr@10
|
104 |
+
- type: dot_map@100
|
105 |
+
value: 0.4675385567218492
|
106 |
+
name: Dot Map@100
|
107 |
+
- type: query_active_dims
|
108 |
+
value: 6.380000114440918
|
109 |
+
name: Query Active Dims
|
110 |
+
- type: query_sparsity_ratio
|
111 |
+
value: 0.9997909704437966
|
112 |
+
name: Query Sparsity Ratio
|
113 |
+
- type: corpus_active_dims
|
114 |
+
value: 813.6908569335938
|
115 |
+
name: Corpus Active Dims
|
116 |
+
- type: corpus_sparsity_ratio
|
117 |
+
value: 0.9733408408055306
|
118 |
+
name: Corpus Sparsity Ratio
|
119 |
+
---
|
120 |
+
|
121 |
+
# Inference-free SPLADE distilbert-base-uncased trained on Natural-Questions tuples
|
122 |
+
|
123 |
+
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
124 |
+
## Model Details
|
125 |
+
|
126 |
+
### Model Description
|
127 |
+
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
|
128 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
|
129 |
+
- **Maximum Sequence Length:** 512 tokens
|
130 |
+
- **Output Dimensionality:** 30522 dimensions
|
131 |
+
- **Similarity Function:** Dot Product
|
132 |
+
<!-- - **Training Dataset:** Unknown -->
|
133 |
+
- **Language:** en
|
134 |
+
- **License:** apache-2.0
|
135 |
+
|
136 |
+
### Model Sources
|
137 |
+
|
138 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
139 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
140 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
141 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
142 |
+
|
143 |
+
### Full Model Architecture
|
144 |
+
|
145 |
+
```
|
146 |
+
SparseEncoder(
|
147 |
+
(0): Router(
|
148 |
+
(sub_modules): ModuleDict(
|
149 |
+
(query): Sequential(
|
150 |
+
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
|
151 |
+
)
|
152 |
+
(document): Sequential(
|
153 |
+
(0): MLMTransformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'DistilBertForMaskedLM'})
|
154 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
|
155 |
+
)
|
156 |
+
)
|
157 |
+
)
|
158 |
+
)
|
159 |
+
```
|
160 |
+
|
161 |
+
## Usage
|
162 |
+
|
163 |
+
### Direct Usage (Sentence Transformers)
|
164 |
+
|
165 |
+
First install the Sentence Transformers library:
|
166 |
+
|
167 |
+
```bash
|
168 |
+
pip install -U sentence-transformers
|
169 |
+
```
|
170 |
+
|
171 |
+
Then you can load this model and run inference.
|
172 |
+
```python
|
173 |
+
from sentence_transformers import SparseEncoder
|
174 |
+
|
175 |
+
# Download from the 🤗 Hub
|
176 |
+
model = SparseEncoder("monkeypostulate/inference-free-splade-distilbert-base-uncased-nq")
|
177 |
+
# Run inference
|
178 |
+
queries = [
|
179 |
+
"\u00bfHay una s\u00e1bana de algod\u00f3n ajustada disponible en tama\u00f1o queen?",
|
180 |
+
]
|
181 |
+
documents = [
|
182 |
+
'Pizuna 400 Thread Count Cotton Fitted-Sheet Queen Size White 1pc, 100% Long Staple Cotton Sateen Fitted Bed Sheet With All Around Elastic Deep Pocket Queen Sheets Fit Up to 15Inch (White Fitted Sheet)',
|
183 |
+
'ArtSocket Shower Curtain Teal Rustic Shabby Country Chic Blue Curtains Wood Rose Home Bathroom Decor Polyester Fabric Waterproof 72 x 72 Inches Set with Hooks',
|
184 |
+
'AFARER Case Compatible with Samsung Galaxy S7 5.1 inch, Military Grade 12ft Drop Tested Protective Case with Kickstand,Military Armor Dual Layer Protective Cover - Blue',
|
185 |
+
]
|
186 |
+
query_embeddings = model.encode_query(queries)
|
187 |
+
document_embeddings = model.encode_document(documents)
|
188 |
+
print(query_embeddings.shape, document_embeddings.shape)
|
189 |
+
# [1, 30522] [3, 30522]
|
190 |
+
|
191 |
+
# Get the similarity scores for the embeddings
|
192 |
+
similarities = model.similarity(query_embeddings, document_embeddings)
|
193 |
+
print(similarities)
|
194 |
+
# tensor([[13.2777, 7.2952, 2.9255]])
|
195 |
+
```
|
196 |
+
|
197 |
+
<!--
|
198 |
+
### Direct Usage (Transformers)
|
199 |
+
|
200 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
201 |
+
|
202 |
+
</details>
|
203 |
+
-->
|
204 |
+
|
205 |
+
<!--
|
206 |
+
### Downstream Usage (Sentence Transformers)
|
207 |
+
|
208 |
+
You can finetune this model on your own dataset.
|
209 |
+
|
210 |
+
<details><summary>Click to expand</summary>
|
211 |
+
|
212 |
+
</details>
|
213 |
+
-->
|
214 |
+
|
215 |
+
<!--
|
216 |
+
### Out-of-Scope Use
|
217 |
+
|
218 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
219 |
+
-->
|
220 |
+
|
221 |
+
## Evaluation
|
222 |
+
|
223 |
+
### Metrics
|
224 |
+
|
225 |
+
#### Sparse Information Retrieval
|
226 |
+
|
227 |
+
* Dataset: `NanoMSMARCO`
|
228 |
+
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)
|
229 |
+
|
230 |
+
| Metric | Value |
|
231 |
+
|:----------------------|:-----------|
|
232 |
+
| dot_accuracy@1 | 0.3 |
|
233 |
+
| dot_accuracy@3 | 0.58 |
|
234 |
+
| dot_accuracy@5 | 0.66 |
|
235 |
+
| dot_accuracy@10 | 0.76 |
|
236 |
+
| dot_precision@1 | 0.3 |
|
237 |
+
| dot_precision@3 | 0.1933 |
|
238 |
+
| dot_precision@5 | 0.132 |
|
239 |
+
| dot_precision@10 | 0.076 |
|
240 |
+
| dot_recall@1 | 0.3 |
|
241 |
+
| dot_recall@3 | 0.58 |
|
242 |
+
| dot_recall@5 | 0.66 |
|
243 |
+
| dot_recall@10 | 0.76 |
|
244 |
+
| **dot_ndcg@10** | **0.5302** |
|
245 |
+
| dot_mrr@10 | 0.4564 |
|
246 |
+
| dot_map@100 | 0.4675 |
|
247 |
+
| query_active_dims | 6.38 |
|
248 |
+
| query_sparsity_ratio | 0.9998 |
|
249 |
+
| corpus_active_dims | 813.6909 |
|
250 |
+
| corpus_sparsity_ratio | 0.9733 |
|
251 |
+
|
252 |
+
<!--
|
253 |
+
## Bias, Risks and Limitations
|
254 |
+
|
255 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
256 |
+
-->
|
257 |
+
|
258 |
+
<!--
|
259 |
+
### Recommendations
|
260 |
+
|
261 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
262 |
+
-->
|
263 |
+
|
264 |
+
## Training Details
|
265 |
+
|
266 |
+
### Training Dataset
|
267 |
+
|
268 |
+
#### Unnamed Dataset
|
269 |
+
|
270 |
+
* Size: 89,000 training samples
|
271 |
+
* Columns: <code>query</code> and <code>document</code>
|
272 |
+
* Approximate statistics based on the first 1000 samples:
|
273 |
+
| | query | document |
|
274 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
275 |
+
| type | string | string |
|
276 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 21.52 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 33.4 tokens</li><li>max: 93 tokens</li></ul> |
|
277 |
+
* Samples:
|
278 |
+
| query | document |
|
279 |
+
|:-------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
280 |
+
| <code>¿Hay una lámpara de colgar con batería disponible?</code> | <code>Farmhouse Plug in Pendant Light with On/Off Switch Wire Caged Hanging Pendant Lamp 16ft Cord</code> |
|
281 |
+
| <code>¿Hay leggings con bolsillos disponibles para mujeres?</code> | <code>IUGA High Waist Yoga Pants with Pockets, Tummy Control, Workout Pants for Women 4 Way Stretch Yoga Leggings with Pockets</code> |
|
282 |
+
| <code>¿Cuál es la tapa de oscuridad marrón disponible?</code> | <code>Thicken It 100% Scalp Coverage Hair Powder - DARK BROWN - Talc-Free .32 oz. Water Resistant Hair Loss Concealer. Naturally Thicker Than Hair Fibers & Spray Concealers</code> |
|
283 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
284 |
+
```json
|
285 |
+
{
|
286 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
|
287 |
+
"document_regularizer_weight": 0.003,
|
288 |
+
"query_regularizer_weight": 0
|
289 |
+
}
|
290 |
+
```
|
291 |
+
|
292 |
+
### Evaluation Dataset
|
293 |
+
|
294 |
+
#### Unnamed Dataset
|
295 |
+
|
296 |
+
* Size: 1,000 evaluation samples
|
297 |
+
* Columns: <code>query</code> and <code>document</code>
|
298 |
+
* Approximate statistics based on the first 1000 samples:
|
299 |
+
| | query | document |
|
300 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
301 |
+
| type | string | string |
|
302 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 20.94 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 33.09 tokens</li><li>max: 79 tokens</li></ul> |
|
303 |
+
* Samples:
|
304 |
+
| query | document |
|
305 |
+
|:-------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
306 |
+
| <code>¿Qué es un modelo anatómico del corazón?</code> | <code>Axis Scientific Heart Model, 2-Part Deluxe Life Size Human Heart Replica with 34 Anatomical Structures, Held Together with Magnets, Includes Mounted Display Base, Detailed Product Manual and Warranty</code> |
|
307 |
+
| <code>¿Hay un buscador de peces portátil disponible?</code> | <code>HawkEye Fishtrax 1C Fish Finder with HD Color Virtuview Display, Black/Red, 2" H x 1.6" W Screen Size</code> |
|
308 |
+
| <code>¿Hay un disfraz de Anna adulta de Frozen disponible para comprar?</code> | <code>Mitef Anime Cosplay Costume Princess Anna Fancy Dress with Shawl for Adult, L</code> |
|
309 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
310 |
+
```json
|
311 |
+
{
|
312 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
|
313 |
+
"document_regularizer_weight": 0.003,
|
314 |
+
"query_regularizer_weight": 0
|
315 |
+
}
|
316 |
+
```
|
317 |
+
|
318 |
+
### Training Hyperparameters
|
319 |
+
#### Non-Default Hyperparameters
|
320 |
+
|
321 |
+
- `eval_strategy`: steps
|
322 |
+
- `per_device_train_batch_size`: 256
|
323 |
+
- `per_device_eval_batch_size`: 256
|
324 |
+
- `learning_rate`: 2e-05
|
325 |
+
- `warmup_ratio`: 0.1
|
326 |
+
- `batch_sampler`: no_duplicates
|
327 |
+
- `router_mapping`: {'query': 'query', 'answer': 'document'}
|
328 |
+
|
329 |
+
#### All Hyperparameters
|
330 |
+
<details><summary>Click to expand</summary>
|
331 |
+
|
332 |
+
- `overwrite_output_dir`: False
|
333 |
+
- `do_predict`: False
|
334 |
+
- `eval_strategy`: steps
|
335 |
+
- `prediction_loss_only`: True
|
336 |
+
- `per_device_train_batch_size`: 256
|
337 |
+
- `per_device_eval_batch_size`: 256
|
338 |
+
- `per_gpu_train_batch_size`: None
|
339 |
+
- `per_gpu_eval_batch_size`: None
|
340 |
+
- `gradient_accumulation_steps`: 1
|
341 |
+
- `eval_accumulation_steps`: None
|
342 |
+
- `torch_empty_cache_steps`: None
|
343 |
+
- `learning_rate`: 2e-05
|
344 |
+
- `weight_decay`: 0.0
|
345 |
+
- `adam_beta1`: 0.9
|
346 |
+
- `adam_beta2`: 0.999
|
347 |
+
- `adam_epsilon`: 1e-08
|
348 |
+
- `max_grad_norm`: 1.0
|
349 |
+
- `num_train_epochs`: 3
|
350 |
+
- `max_steps`: -1
|
351 |
+
- `lr_scheduler_type`: linear
|
352 |
+
- `lr_scheduler_kwargs`: {}
|
353 |
+
- `warmup_ratio`: 0.1
|
354 |
+
- `warmup_steps`: 0
|
355 |
+
- `log_level`: passive
|
356 |
+
- `log_level_replica`: warning
|
357 |
+
- `log_on_each_node`: True
|
358 |
+
- `logging_nan_inf_filter`: True
|
359 |
+
- `save_safetensors`: True
|
360 |
+
- `save_on_each_node`: False
|
361 |
+
- `save_only_model`: False
|
362 |
+
- `restore_callback_states_from_checkpoint`: False
|
363 |
+
- `no_cuda`: False
|
364 |
+
- `use_cpu`: False
|
365 |
+
- `use_mps_device`: False
|
366 |
+
- `seed`: 42
|
367 |
+
- `data_seed`: None
|
368 |
+
- `jit_mode_eval`: False
|
369 |
+
- `use_ipex`: False
|
370 |
+
- `bf16`: False
|
371 |
+
- `fp16`: False
|
372 |
+
- `fp16_opt_level`: O1
|
373 |
+
- `half_precision_backend`: auto
|
374 |
+
- `bf16_full_eval`: False
|
375 |
+
- `fp16_full_eval`: False
|
376 |
+
- `tf32`: None
|
377 |
+
- `local_rank`: 0
|
378 |
+
- `ddp_backend`: None
|
379 |
+
- `tpu_num_cores`: None
|
380 |
+
- `tpu_metrics_debug`: False
|
381 |
+
- `debug`: []
|
382 |
+
- `dataloader_drop_last`: False
|
383 |
+
- `dataloader_num_workers`: 0
|
384 |
+
- `dataloader_prefetch_factor`: None
|
385 |
+
- `past_index`: -1
|
386 |
+
- `disable_tqdm`: False
|
387 |
+
- `remove_unused_columns`: True
|
388 |
+
- `label_names`: None
|
389 |
+
- `load_best_model_at_end`: False
|
390 |
+
- `ignore_data_skip`: False
|
391 |
+
- `fsdp`: []
|
392 |
+
- `fsdp_min_num_params`: 0
|
393 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
394 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
395 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
396 |
+
- `deepspeed`: None
|
397 |
+
- `label_smoothing_factor`: 0.0
|
398 |
+
- `optim`: adamw_torch_fused
|
399 |
+
- `optim_args`: None
|
400 |
+
- `adafactor`: False
|
401 |
+
- `group_by_length`: False
|
402 |
+
- `length_column_name`: length
|
403 |
+
- `ddp_find_unused_parameters`: None
|
404 |
+
- `ddp_bucket_cap_mb`: None
|
405 |
+
- `ddp_broadcast_buffers`: False
|
406 |
+
- `dataloader_pin_memory`: True
|
407 |
+
- `dataloader_persistent_workers`: False
|
408 |
+
- `skip_memory_metrics`: True
|
409 |
+
- `use_legacy_prediction_loop`: False
|
410 |
+
- `push_to_hub`: False
|
411 |
+
- `resume_from_checkpoint`: None
|
412 |
+
- `hub_model_id`: None
|
413 |
+
- `hub_strategy`: every_save
|
414 |
+
- `hub_private_repo`: None
|
415 |
+
- `hub_always_push`: False
|
416 |
+
- `hub_revision`: None
|
417 |
+
- `gradient_checkpointing`: False
|
418 |
+
- `gradient_checkpointing_kwargs`: None
|
419 |
+
- `include_inputs_for_metrics`: False
|
420 |
+
- `include_for_metrics`: []
|
421 |
+
- `eval_do_concat_batches`: True
|
422 |
+
- `fp16_backend`: auto
|
423 |
+
- `push_to_hub_model_id`: None
|
424 |
+
- `push_to_hub_organization`: None
|
425 |
+
- `mp_parameters`:
|
426 |
+
- `auto_find_batch_size`: False
|
427 |
+
- `full_determinism`: False
|
428 |
+
- `torchdynamo`: None
|
429 |
+
- `ray_scope`: last
|
430 |
+
- `ddp_timeout`: 1800
|
431 |
+
- `torch_compile`: False
|
432 |
+
- `torch_compile_backend`: None
|
433 |
+
- `torch_compile_mode`: None
|
434 |
+
- `include_tokens_per_second`: False
|
435 |
+
- `include_num_input_tokens_seen`: False
|
436 |
+
- `neftune_noise_alpha`: None
|
437 |
+
- `optim_target_modules`: None
|
438 |
+
- `batch_eval_metrics`: False
|
439 |
+
- `eval_on_start`: False
|
440 |
+
- `use_liger_kernel`: False
|
441 |
+
- `liger_kernel_config`: None
|
442 |
+
- `eval_use_gather_object`: False
|
443 |
+
- `average_tokens_across_devices`: False
|
444 |
+
- `prompts`: None
|
445 |
+
- `batch_sampler`: no_duplicates
|
446 |
+
- `multi_dataset_batch_sampler`: proportional
|
447 |
+
- `router_mapping`: {'query': 'query', 'answer': 'document'}
|
448 |
+
- `learning_rate_mapping`: {}
|
449 |
+
|
450 |
+
</details>
|
451 |
+
|
452 |
+
### Training Logs
|
453 |
+
| Epoch | Step | Training Loss | NanoMSMARCO_dot_ndcg@10 |
|
454 |
+
|:------:|:----:|:-------------:|:-----------------------:|
|
455 |
+
| 0.5747 | 200 | 3.33 | - |
|
456 |
+
| 1.1494 | 400 | 2.755 | - |
|
457 |
+
| -1 | -1 | - | 0.5302 |
|
458 |
+
|
459 |
+
|
460 |
+
### Framework Versions
|
461 |
+
- Python: 3.9.6
|
462 |
+
- Sentence Transformers: 5.1.0
|
463 |
+
- Transformers: 4.55.0
|
464 |
+
- PyTorch: 2.8.0
|
465 |
+
- Accelerate: 1.10.0
|
466 |
+
- Datasets: 4.0.0
|
467 |
+
- Tokenizers: 0.21.4
|
468 |
+
|
469 |
+
## Citation
|
470 |
+
|
471 |
+
### BibTeX
|
472 |
+
|
473 |
+
#### Sentence Transformers
|
474 |
+
```bibtex
|
475 |
+
@inproceedings{reimers-2019-sentence-bert,
|
476 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
477 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
478 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
479 |
+
month = "11",
|
480 |
+
year = "2019",
|
481 |
+
publisher = "Association for Computational Linguistics",
|
482 |
+
url = "https://arxiv.org/abs/1908.10084",
|
483 |
+
}
|
484 |
+
```
|
485 |
+
|
486 |
+
#### SpladeLoss
|
487 |
+
```bibtex
|
488 |
+
@misc{formal2022distillationhardnegativesampling,
|
489 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
490 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
491 |
+
year={2022},
|
492 |
+
eprint={2205.04733},
|
493 |
+
archivePrefix={arXiv},
|
494 |
+
primaryClass={cs.IR},
|
495 |
+
url={https://arxiv.org/abs/2205.04733},
|
496 |
+
}
|
497 |
+
```
|
498 |
+
|
499 |
+
#### SparseMultipleNegativesRankingLoss
|
500 |
+
```bibtex
|
501 |
+
@misc{henderson2017efficient,
|
502 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
503 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
504 |
+
year={2017},
|
505 |
+
eprint={1705.00652},
|
506 |
+
archivePrefix={arXiv},
|
507 |
+
primaryClass={cs.CL}
|
508 |
+
}
|
509 |
+
```
|
510 |
+
|
511 |
+
#### FlopsLoss
|
512 |
+
```bibtex
|
513 |
+
@article{paria2020minimizing,
|
514 |
+
title={Minimizing flops to learn efficient sparse representations},
|
515 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
516 |
+
journal={arXiv preprint arXiv:2004.05665},
|
517 |
+
year={2020}
|
518 |
+
}
|
519 |
+
```
|
520 |
+
|
521 |
+
<!--
|
522 |
+
## Glossary
|
523 |
+
|
524 |
+
*Clearly define terms in order to be accessible across audiences.*
|
525 |
+
-->
|
526 |
+
|
527 |
+
<!--
|
528 |
+
## Model Card Authors
|
529 |
+
|
530 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
531 |
+
-->
|
532 |
+
|
533 |
+
<!--
|
534 |
+
## Model Card Contact
|
535 |
+
|
536 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
537 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_type": "SparseEncoder",
|
3 |
+
"__version__": {
|
4 |
+
"sentence_transformers": "5.1.0",
|
5 |
+
"transformers": "4.55.0",
|
6 |
+
"pytorch": "2.8.0"
|
7 |
+
},
|
8 |
+
"prompts": {
|
9 |
+
"query": "",
|
10 |
+
"document": ""
|
11 |
+
},
|
12 |
+
"default_prompt_name": null,
|
13 |
+
"similarity_fn_name": "dot"
|
14 |
+
}
|
document_0_MLMTransformer/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForMaskedLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"max_position_embeddings": 512,
|
12 |
+
"model_type": "distilbert",
|
13 |
+
"n_heads": 12,
|
14 |
+
"n_layers": 6,
|
15 |
+
"pad_token_id": 0,
|
16 |
+
"qa_dropout": 0.1,
|
17 |
+
"seq_classif_dropout": 0.2,
|
18 |
+
"sinusoidal_pos_embds": false,
|
19 |
+
"tie_weights_": true,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.55.0",
|
22 |
+
"vocab_size": 30522
|
23 |
+
}
|
document_0_MLMTransformer/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be0e44d5d6bbf9e553d89e57c178f6c1b539962df9ab0d8e8bbe584a576f7555
|
3 |
+
size 267954768
|
document_0_MLMTransformer/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
document_0_MLMTransformer/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
document_0_MLMTransformer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
document_0_MLMTransformer/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
document_0_MLMTransformer/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
document_1_SpladePooling/config.json
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"pooling_strategy": "max",
|
3 |
+
"activation_function": "relu",
|
4 |
+
"word_embedding_dimension": 30522
|
5 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Router"
|
7 |
+
}
|
8 |
+
]
|
query_0_SparseStaticEmbedding/config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"frozen": false
|
3 |
+
}
|
query_0_SparseStaticEmbedding/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ebdac66a6b9e9ca8e50bfaa3191bc4b6a88f0b1d1f2bb6c2f7346138efa7b5f
|
3 |
+
size 122168
|
query_0_SparseStaticEmbedding/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
query_0_SparseStaticEmbedding/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
query_0_SparseStaticEmbedding/tokenizer_config.json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "DistilBertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
query_0_SparseStaticEmbedding/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
router_config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"types": {
|
3 |
+
"query_0_SparseStaticEmbedding": "sentence_transformers.sparse_encoder.models.SparseStaticEmbedding.SparseStaticEmbedding",
|
4 |
+
"document_0_MLMTransformer": "sentence_transformers.sparse_encoder.models.MLMTransformer.MLMTransformer",
|
5 |
+
"document_1_SpladePooling": "sentence_transformers.sparse_encoder.models.SpladePooling.SpladePooling"
|
6 |
+
},
|
7 |
+
"structure": {
|
8 |
+
"query": [
|
9 |
+
"query_0_SparseStaticEmbedding"
|
10 |
+
],
|
11 |
+
"document": [
|
12 |
+
"document_0_MLMTransformer",
|
13 |
+
"document_1_SpladePooling"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
"parameters": {
|
17 |
+
"default_route": "document",
|
18 |
+
"allow_empty_key": true
|
19 |
+
}
|
20 |
+
}
|