Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/monologg/koelectra-base-discriminator/README.md
README.md
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: ko
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
# KoELECTRA (Base Discriminator)
|
| 6 |
+
|
| 7 |
+
Pretrained ELECTRA Language Model for Korean (`koelectra-base-discriminator`)
|
| 8 |
+
|
| 9 |
+
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
|
| 10 |
+
|
| 11 |
+
## Usage
|
| 12 |
+
|
| 13 |
+
### Load model and tokenizer
|
| 14 |
+
|
| 15 |
+
```python
|
| 16 |
+
>>> from transformers import ElectraModel, ElectraTokenizer
|
| 17 |
+
|
| 18 |
+
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-discriminator")
|
| 19 |
+
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
|
| 20 |
+
```
|
| 21 |
+
|
| 22 |
+
### Tokenizer example
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
>>> from transformers import ElectraTokenizer
|
| 26 |
+
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
|
| 27 |
+
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
|
| 28 |
+
['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]']
|
| 29 |
+
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'E', '##L', '##EC', '##T', '##RA', '##를', '공유', '##합니다', '.', '[SEP]'])
|
| 30 |
+
[2, 18429, 41, 6240, 15229, 6204, 20894, 5689, 12622, 10690, 18, 3]
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## Example using ElectraForPreTraining
|
| 34 |
+
|
| 35 |
+
```python
|
| 36 |
+
import torch
|
| 37 |
+
from transformers import ElectraForPreTraining, ElectraTokenizer
|
| 38 |
+
|
| 39 |
+
discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-discriminator")
|
| 40 |
+
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-discriminator")
|
| 41 |
+
|
| 42 |
+
sentence = "나는 방금 밥을 먹었다."
|
| 43 |
+
fake_sentence = "나는 내일 밥을 먹었다."
|
| 44 |
+
|
| 45 |
+
fake_tokens = tokenizer.tokenize(fake_sentence)
|
| 46 |
+
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
|
| 47 |
+
|
| 48 |
+
discriminator_outputs = discriminator(fake_inputs)
|
| 49 |
+
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
|
| 50 |
+
|
| 51 |
+
print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
|
| 52 |
+
```
|