Add README.md
Browse files(Thank you to
@nielsr
for the template!)
README.md
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: robotics
|
3 |
+
library_name: transformers
|
4 |
+
license: mit
|
5 |
+
---
|
6 |
+
# Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success
|
7 |
+
|
8 |
+
This repository contains the OpenVLA-OFT checkpoint trained on 4 LIBERO task suites combined (-Spatial, -Object, -Goal, -Long), as described in [Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success](https://arxiv.org/abs/2502.19645). OpenVLA-OFT significantly improves upon the base OpenVLA model by incorporating optimized fine-tuning techniques.
|
9 |
+
|
10 |
+
Project Page: https://openvla-oft.github.io/
|
11 |
+
|
12 |
+
Code: https://github.com/openvla-oft/openvla-oft
|
13 |
+
|
14 |
+
See here for other OpenVLA-OFT checkpoints: https://huggingface.co/moojink?search_models=oft
|
15 |
+
## Quick Start
|
16 |
+
This example demonstrates generating an action chunk using a pretrained OpenVLA-OFT checkpoint. Ensure you have set up the conda environment as described in the GitHub README.
|
17 |
+
```python
|
18 |
+
import pickle
|
19 |
+
from experiments.robot.libero.run_libero_eval import GenerateConfig
|
20 |
+
from experiments.robot.openvla_utils import get_action_head, get_processor, get_proprio_projector, get_vla, get_vla_action
|
21 |
+
from prismatic.vla.constants import NUM_ACTIONS_CHUNK, PROPRIO_DIM
|
22 |
+
# Instantiate config (see class GenerateConfig in experiments/robot/libero/run_libero_eval.py for definitions)
|
23 |
+
cfg = GenerateConfig(
|
24 |
+
pretrained_checkpoint = "moojink/openvla-7b-oft-finetuned-libero-spatial",
|
25 |
+
use_l1_regression = True,
|
26 |
+
use_diffusion = False,
|
27 |
+
use_film = False,
|
28 |
+
num_images_in_input = 2,
|
29 |
+
use_proprio = True,
|
30 |
+
load_in_8bit = False,
|
31 |
+
load_in_4bit = False,
|
32 |
+
center_crop = True,
|
33 |
+
num_open_loop_steps = NUM_ACTIONS_CHUNK,
|
34 |
+
unnorm_key = "libero_spatial_no_noops",
|
35 |
+
)
|
36 |
+
# Load OpenVLA-OFT policy and inputs processor
|
37 |
+
vla = get_vla(cfg)
|
38 |
+
processor = get_processor(cfg)
|
39 |
+
# Load MLP action head to generate continuous actions (via L1 regression)
|
40 |
+
action_head = get_action_head(cfg, llm_dim=vla.llm_dim)
|
41 |
+
# Load proprio projector to map proprio to language embedding space
|
42 |
+
proprio_projector = get_proprio_projector(cfg, llm_dim=vla.llm_dim, proprio_dim=PROPRIO_DIM)
|
43 |
+
|
44 |
+
# Load sample observation:
|
45 |
+
# observation (dict): {
|
46 |
+
# "full_image": primary third-person image,
|
47 |
+
# "wrist_image": wrist-mounted camera image,
|
48 |
+
# "state": robot proprioceptive state,
|
49 |
+
# "task_description": task description,
|
50 |
+
# }
|
51 |
+
with open("experiments/robot/libero/sample_libero_spatial_observation.pkl", "rb") as file:
|
52 |
+
observation = pickle.load(file)
|
53 |
+
# Generate robot action chunk (sequence of future actions)
|
54 |
+
actions = get_vla_action(cfg, vla, processor, observation, observation["task_description"], action_head, proprio_projector)
|
55 |
+
print("Generated action chunk:")
|
56 |
+
for act in actions:
|
57 |
+
print(act)
|
58 |
+
```
|
59 |
+
## Citation
|
60 |
+
```bibtex
|
61 |
+
@article{kim2025fine,
|
62 |
+
title={Fine-Tuning Vision-Language-Action Models: Optimizing Speed and Success},
|
63 |
+
author={Kim, Moo Jin and Finn, Chelsea and Liang, Percy},
|
64 |
+
journal={arXiv preprint arXiv:2502.19645},
|
65 |
+
year={2025}
|
66 |
+
}
|
67 |
+
```
|