File size: 11,251 Bytes
c102e8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Megatron tokenizers."""
from transformers.tokenization_utils import PreTrainedTokenizer
from typing import Union
from typing import (
    AbstractSet,
    cast,
    Collection,
    Dict,
    Iterator,
    List,
    Literal,
    Sequence,
    Union,
    Optional,
)
from tiktoken.load import load_tiktoken_bpe
import tiktoken
from pathlib import Path
import os
import logging
from tokenizers import AddedToken

logger = logging.getLogger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tiktoken.model"}


class TikTokenTokenizer(PreTrainedTokenizer):
    """
    Tokenizing and encoding/decoding text using the Tiktoken tokenizer.
    """

    special_tokens: Dict[str, int]

    num_reserved_special_tokens = 293 + 128

    pat_str = "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"

    vocab_files_names = VOCAB_FILES_NAMES

    def __init__(
        self,
        vocab_file,
        bos_token: Union[str, AddedToken] = "[BOS]",
        eos_token: Union[str, AddedToken] = "[EOS]",
        unk_token: Union[str, AddedToken] = "[UNK]",
        pad_token: Union[str, AddedToken] = "[PAD]",
        additional_special_tokens: Optional[List[str]] = None,
        added_tokens_decoder: Optional[dict] = None,
        **kwargs,
    ):
        """
        Initializes the Tokenizer with a Tiktoken model.

        Args:
            model_path (str): The path to the Tiktoken model file.
        """
        assert os.path.isfile(vocab_file), vocab_file

        mergeable_ranks = load_tiktoken_bpe(vocab_file)
        num_base_tokens = len(mergeable_ranks)

        used_special_tokens = [
            "[BOS]",
            "[EOS]",
            "<|im_msg_end|>",  # 0
            "<|im_user_msg_start|>",  # 1
            "<|im_assistant_msg_start|>",  # 2
            "<|reserved_token_0|>",  # 3
            "<|reserved_token_1|>",
            "<|reserved_token_2|>",
            "<|reserved_token_3|>",  # 4
            "[EOT]",
            "<|reserved_token_4|>",  # 5
            "<|reserved_token_5|>",  # 6
            "<|reserved_token_6|>",  # 7
            "<|reserved_token_7|>",  # 8
            "<|reserved_token_8|>",  # 9
            "<|reserved_token_9|>",  # 10
            "<|reserved_token_10|>",  # 11
            "<|reserved_token_11|>",  # 12
            "<|im_media_begin|>",  # 13
            "<|reserved_token_12|>",  # 14
            "<|im_media_end|>",  # 15
            "<|reserved_token_13|>",  # 16
            "<|reserved_token_14|>",  # 17
            "<|im_kimia_text_blank|>",  # 18
            "<|im_kimia_text_eos|>",  # 19
            "<|reserved_token_15|>",  # 20
            "<|reserved_token_16|>",  # 21
            "<|im_kimia_user_msg_start|>",  # 22
            "<|im_kimia_assistant_msg_start|>",  # 23
            "<|reserved_token_17|>",  # 24
            "<|reserved_token_18|>",  # 25
            "<|reserved_token_19|>",  # 26
            "<|im_kimia_speech_ct_id|>",  # 27
            "<|im_kimia_speech_ctd_id|>",  # 28
        ]
        autoset_special_tokens = [
            f"<|reserved_token_{i}|>"
            for i in range(
                20, self.num_reserved_special_tokens - len(used_special_tokens) + 20
            )
        ]
        special_tokens = used_special_tokens + autoset_special_tokens
        self.special_tokens = {
            token: num_base_tokens + i for i, token in enumerate(special_tokens)
        }
        self.model = tiktoken.Encoding(
            name=Path(vocab_file).name,
            pat_str=self.pat_str,
            mergeable_ranks=mergeable_ranks,
            special_tokens=self.special_tokens,
        )
        logger.info(f"Reloaded tiktoken model from {vocab_file}")

        self.n_words: int = self.model.n_vocab
        # BOS / EOS token IDs
        self.bos_token = "[BOS]"
        self.bos_id: int = self.special_tokens["[BOS]"]
        self.eos_token = "[EOS]"
        self.eos_id: int = self.special_tokens["[EOS]"]

        # use last speical token as pad token, the last - 1 is unk_token
        self.pad_token: str = special_tokens[-1]
        self.pad_id: int = self.special_tokens[self.pad_token]

        self.unk_token: str = special_tokens[-2]
        self.unk_id: int = self.special_tokens[self.pad_token]

        self.stop_tokens = {
            self.special_tokens["[EOS]"],
            self.special_tokens["[EOT]"],
        }

        logger.info(
            f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}"
        )

    def encode(
        self,
        s: str,
        *,
        bos: bool,
        eos: bool,
        allowed_special: Union[Literal["all"], AbstractSet[str]] = set(),
        disallowed_special: Union[Literal["all"], Collection[str]] = (),
    ) -> List[int]:
        """
        Encodes a string into a list of token IDs.

        Args:
            s (str): The input string to be encoded.
            bos (bool): Whether to prepend the beginning-of-sequence token.
            eos (bool): Whether to append the end-of-sequence token.
            allowed_tokens ("all"|set[str]): allowed special tokens in string
            disallowed_tokens ("all"|set[str]): special tokens that raise an error when in string

        Returns:
            list[int]: A list of token IDs.

        By default, setting disallowed_special=() encodes a string by ignoring
        special tokens. Specifically:
        - Setting `disallowed_special` to () will cause all text corresponding
          to special tokens to be encoded as natural text (insteading of raising
          an error).
        - Setting `allowed_special` to "all" will treat all text corresponding
          to special tokens to be encoded as special tokens.
        """
        assert type(s) is str

        # The tiktoken tokenizer can handle <=400k chars without
        # pyo3_runtime.PanicException.
        TIKTOKEN_MAX_ENCODE_CHARS = 400_000

        # https://github.com/openai/tiktoken/issues/195
        # Here we iterate over subsequences and split if we exceed the limit
        # of max consecutive non-whitespace or whitespace characters.
        MAX_NO_WHITESPACES_CHARS = 25_000

        substrs = (
            substr
            for i in range(0, len(s), TIKTOKEN_MAX_ENCODE_CHARS)
            for substr in self._split_whitespaces_or_nonwhitespaces(
                s[i : i + TIKTOKEN_MAX_ENCODE_CHARS], MAX_NO_WHITESPACES_CHARS
            )
        )
        t: List[int] = []
        for substr in substrs:
            t.extend(
                self.model.encode(
                    substr,
                    allowed_special=allowed_special,
                    disallowed_special=disallowed_special,
                )
            )
        if bos:
            t.insert(0, self.bos_id)
        if eos:
            t.append(self.eos_id)
        return t

    def decode(self, t: Sequence[int]) -> str:
        """
        Decodes a list of token IDs into a string.

        Args:
            t (List[int]): The list of token IDs to be decoded.

        Returns:
            str: The decoded string.
        """
        # Typecast is safe here. Tiktoken doesn't do anything list-related with the sequence.
        return self.model.decode(cast(List[int], t))

    @staticmethod
    def _split_whitespaces_or_nonwhitespaces(
        s: str, max_consecutive_slice_len: int
    ) -> Iterator[str]:
        """
        Splits the string `s` so that each substring contains no more than `max_consecutive_slice_len`
        consecutive whitespaces or consecutive non-whitespaces.
        """
        current_slice_len = 0
        current_slice_is_space = s[0].isspace() if len(s) > 0 else False
        slice_start = 0

        for i in range(len(s)):
            is_now_space = s[i].isspace()

            if current_slice_is_space ^ is_now_space:
                current_slice_len = 1
                current_slice_is_space = is_now_space
            else:
                current_slice_len += 1
                if current_slice_len > max_consecutive_slice_len:
                    yield s[slice_start:i]
                    slice_start = i
                    current_slice_len = 1
        yield s[slice_start:]

    """ ----- Below are the abstract methods required by megatron ----- """

    @property
    def vocab_size(self):
        return self.n_words

    @property
    def vocab(self):
        if hasattr(self, "str_vocab"):
            return self.str_vocab
        self.str_vocab = {}

        # convert mergeable_ranks from bytes to string
        utf8_num, unicode_num = 0, 0
        for byte_key, index in self.model._mergeable_ranks.items():
            try:
                str_key = byte_key.decode("utf-8")
                utf8_num += 1
            except UnicodeDecodeError:
                # use backslashreplace so we can get num vocab different tokens
                # see: https://docs.python.org/3/howto/unicode.html
                # this vocab is only used for offline processing, so this is fine
                str_key = byte_key.decode("utf-8", "backslashreplace") + "_unicode_"
                unicode_num += 1

            self.str_vocab[str_key] = index
        logger.info(f"num utf8: {utf8_num}, num unicode: {unicode_num}")

        # add all special tokens to the dictionary
        self.str_vocab.update(self.model._special_tokens)

        assert len(self.str_vocab) == self.vocab_size
        return self.str_vocab

    @property
    def inv_vocab(self):
        return {v: k for k, v in self.vocab.items()}

    def tokenize(self, text, eos=True):
        # BOS: always add bos token
        # EOS:
        #    Most cases should be true when we are tokenizing a full sequence
        #    Only setting to false when we are running a inference
        return self.encode(text, bos=True, eos=eos)

    def detokenize(self, tokens):
        # convert tensor to list if needed...
        if not isinstance(tokens, list):
            tokens = tokens.tolist()
        return self.decode(tokens)

    @property
    def eod(self):
        return self.eos_id

    def bod(self):
        return self.bos_id

    @property
    def msk_start_id(self):
        return self.msk_start

    @property
    def msk_end_id(self):
        return self.msk_end

    def _get_index_2_bytes(self):
        if hasattr(self, "index_2_bytes"):
            return self.index_2_bytes

        # use array rather than dict for faster access
        self.index_2_bytes = [0] * self.model.n_vocab
        for byte_key, index in self.model._mergeable_ranks.items():
            self.index_2_bytes[index] = len(byte_key)

        for _, index in self.model._special_tokens.items():
            # in total we have 256 special tokens, 2^8 = 256
            # so the num of bytes of each token is only 1
            self.index_2_bytes[index] = 1

        return self.index_2_bytes

    def get_array_bytes(self, array):
        index_2_bytes = self._get_index_2_bytes()
        return sum(index_2_bytes[i] for i in array)

    @property
    def eos_token_id(self):
        return self.eos_id

    @property
    def pad_token_id(self):
        return self.pad_id