|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PyTorch KimiAudio model.""" |
|
|
|
from typing import List, Optional, Tuple, Union |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
import transformers |
|
from packaging import version |
|
|
|
assert version.parse(transformers.__version__) >= version.parse("4.34.1") |
|
|
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
) |
|
from transformers.utils import ( |
|
logging, |
|
) |
|
from .configuration_moonshot_kimia import KimiAudioConfig |
|
import torch.nn.functional as F |
|
from transformers.models.qwen2.modeling_qwen2 import ( |
|
Qwen2RMSNorm, |
|
Qwen2MLP, |
|
Qwen2PreTrainedModel, |
|
) |
|
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb |
|
|
|
if version.parse(transformers.__version__) >= version.parse("4.35.0"): |
|
from transformers.utils import is_flash_attn_2_available as is_flash_attn_available |
|
else: |
|
from transformers.utils import is_flash_attn_available |
|
|
|
if is_flash_attn_available(): |
|
from flash_attn import flash_attn_func, flash_attn_varlen_func |
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input |
|
else: |
|
raise RuntimeError("flash attention must be installed") |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def _get_unpad_data(padding_mask): |
|
seqlens_in_batch = padding_mask.sum(dim=-1, dtype=torch.int32) |
|
indices = torch.nonzero(padding_mask.flatten(), as_tuple=False).flatten() |
|
max_seqlen_in_batch = seqlens_in_batch.max().item() |
|
cu_seqlens = F.pad( |
|
torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) |
|
) |
|
return ( |
|
indices, |
|
cu_seqlens, |
|
max_seqlen_in_batch, |
|
) |
|
|
|
|
|
def _upad_input(query_layer, key_layer, value_layer, padding_mask, query_length): |
|
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(padding_mask) |
|
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape |
|
num_heads = query_layer.shape[2] |
|
|
|
key_layer = index_first_axis( |
|
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
value_layer = index_first_axis( |
|
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), |
|
indices_k, |
|
) |
|
if query_length == kv_seq_len: |
|
query_layer = index_first_axis( |
|
query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k |
|
) |
|
cu_seqlens_q = cu_seqlens_k |
|
max_seqlen_in_batch_q = max_seqlen_in_batch_k |
|
indices_q = indices_k |
|
elif query_length == 1: |
|
max_seqlen_in_batch_q = 1 |
|
cu_seqlens_q = torch.arange( |
|
batch_size + 1, dtype=torch.int32, device=query_layer.device |
|
) |
|
indices_q = cu_seqlens_q[:-1] |
|
query_layer = query_layer.squeeze(1) |
|
else: |
|
|
|
padding_mask = padding_mask[:, -query_length:] |
|
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( |
|
query_layer, padding_mask |
|
) |
|
|
|
return ( |
|
query_layer, |
|
key_layer, |
|
value_layer, |
|
indices_q, |
|
(cu_seqlens_q, cu_seqlens_k), |
|
(max_seqlen_in_batch_q, max_seqlen_in_batch_k), |
|
) |
|
|
|
|
|
|
|
def _make_causal_mask( |
|
input_ids_shape: torch.Size, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
past_key_values_length: int = 0, |
|
): |
|
""" |
|
Make causal mask used for bi-directional self-attention. |
|
""" |
|
bsz, tgt_len = input_ids_shape |
|
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device) |
|
mask_cond = torch.arange(mask.size(-1), device=device) |
|
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0) |
|
mask = mask.to(dtype) |
|
|
|
if past_key_values_length > 0: |
|
mask = torch.cat( |
|
[ |
|
torch.zeros( |
|
tgt_len, past_key_values_length, dtype=dtype, device=device |
|
), |
|
mask, |
|
], |
|
dim=-1, |
|
) |
|
return mask[None, None, :, :].expand( |
|
bsz, 1, tgt_len, tgt_len + past_key_values_length |
|
) |
|
|
|
|
|
|
|
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None): |
|
""" |
|
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. |
|
""" |
|
bsz, src_len = mask.size() |
|
tgt_len = tgt_len if tgt_len is not None else src_len |
|
|
|
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype) |
|
|
|
inverted_mask = 1.0 - expanded_mask |
|
|
|
return inverted_mask.masked_fill( |
|
inverted_mask.to(torch.bool), torch.finfo(dtype).min |
|
) |
|
|
|
|
|
class RotaryEmbedding(nn.Module): |
|
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / ( |
|
self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) |
|
) |
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
|
|
|
self._set_cos_sin_cache( |
|
seq_len=max_position_embeddings, |
|
device=self.inv_freq.device, |
|
dtype=torch.get_default_dtype(), |
|
) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device, dtype): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange( |
|
self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype |
|
) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) |
|
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) |
|
|
|
return ( |
|
self.cos_cached[:seq_len].to(dtype=x.dtype), |
|
self.sin_cached[:seq_len].to(dtype=x.dtype), |
|
) |
|
|
|
|
|
class MoonshotAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: KimiAudioConfig): |
|
super().__init__() |
|
self.config = config |
|
self.hidden_size = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.hidden_size // self.num_heads |
|
self.num_key_value_heads = config.num_key_value_heads |
|
self.num_key_value_groups = self.num_heads // self.num_key_value_heads |
|
self.max_position_embeddings = config.max_position_embeddings |
|
self.rope_theta = config.rope_theta |
|
if (self.head_dim * self.num_heads) != self.hidden_size: |
|
raise ValueError( |
|
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" |
|
f" and `num_heads`: {self.num_heads})." |
|
) |
|
self.q_proj = nn.Linear( |
|
self.hidden_size, self.num_heads * self.head_dim, bias=True |
|
) |
|
self.k_proj = nn.Linear( |
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True |
|
) |
|
self.v_proj = nn.Linear( |
|
self.hidden_size, self.num_key_value_heads * self.head_dim, bias=True |
|
) |
|
self.o_proj = nn.Linear( |
|
self.num_heads * self.head_dim, self.hidden_size, bias=False |
|
) |
|
|
|
self._init_rope() |
|
|
|
def _init_rope(self): |
|
|
|
self.rotary_emb = RotaryEmbedding( |
|
self.head_dim, |
|
max_position_embeddings=self.max_position_embeddings, |
|
base=self.rope_theta, |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: bool = False, |
|
use_cache: bool = False, |
|
padding_mask: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
|
|
|
|
output_attentions = False |
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
|
|
|
|
query_states = query_states.view( |
|
bsz, q_len, self.num_heads, self.head_dim |
|
).transpose(1, 2) |
|
key_states = key_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
value_states = value_states.view( |
|
bsz, q_len, self.num_key_value_heads, self.head_dim |
|
).transpose(1, 2) |
|
|
|
kv_seq_len = key_states.shape[-2] |
|
if past_key_value is not None: |
|
kv_seq_len += past_key_value[0].shape[-2] |
|
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) |
|
cos = cos[position_ids] |
|
sin = sin[position_ids] |
|
query_states, key_states = apply_rotary_pos_emb( |
|
query_states, key_states, cos, sin, position_ids |
|
) |
|
|
|
if past_key_value is not None: |
|
|
|
key_states = torch.cat([past_key_value[0], key_states], dim=2) |
|
value_states = torch.cat([past_key_value[1], value_states], dim=2) |
|
|
|
past_key_value = (key_states, value_states) if use_cache else None |
|
|
|
query_states = query_states.transpose(1, 2) |
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
|
|
|
|
|
|
dropout_rate = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
logger.warning_once( |
|
"The input hidden states seems to be silently casted in float32, this might be related to" |
|
" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
" float16." |
|
) |
|
|
|
query_states = query_states.to(torch.float16) |
|
key_states = key_states.to(torch.float16) |
|
value_states = value_states.to(torch.float16) |
|
|
|
attn_output = self._flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
padding_mask, |
|
q_len, |
|
dropout=dropout_rate, |
|
) |
|
|
|
if input_dtype == torch.float32: |
|
attn_output = attn_output.to(torch.float32) |
|
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() |
|
attn_output = self.o_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
def _flash_attention_forward( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
padding_mask, |
|
query_length, |
|
dropout=0.0, |
|
softmax_scale=None, |
|
): |
|
""" |
|
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token |
|
first unpad the input, then computes the attention scores and pad the final attention scores. |
|
|
|
Args: |
|
query_states (`torch.Tensor`): |
|
Input query states to be passed to Flash Attention API |
|
key_states (`torch.Tensor`): |
|
Input key states to be passed to Flash Attention API |
|
value_states (`torch.Tensor`): |
|
Input value states to be passed to Flash Attention API |
|
padding_mask (`torch.Tensor`): |
|
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the |
|
position of padding tokens and 1 for the position of non-padding tokens. |
|
dropout (`int`, *optional*): |
|
Attention dropout |
|
softmax_scale (`float`, *optional*): |
|
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) |
|
""" |
|
|
|
if padding_mask is not None: |
|
batch_size = query_states.shape[0] |
|
( |
|
query_states, |
|
key_states, |
|
value_states, |
|
indices_q, |
|
cu_seq_lens, |
|
max_seq_lens, |
|
) = _upad_input( |
|
query_states, key_states, value_states, padding_mask, query_length |
|
) |
|
|
|
cu_seqlens_q, cu_seqlens_k = cu_seq_lens |
|
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens |
|
|
|
attn_output_unpad = flash_attn_varlen_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_k=cu_seqlens_k, |
|
max_seqlen_q=max_seqlen_in_batch_q, |
|
max_seqlen_k=max_seqlen_in_batch_k, |
|
dropout_p=dropout, |
|
softmax_scale=softmax_scale, |
|
causal=True, |
|
) |
|
|
|
attn_output = pad_input( |
|
attn_output_unpad, indices_q, batch_size, query_length |
|
) |
|
else: |
|
attn_output = flash_attn_func( |
|
query_states, |
|
key_states, |
|
value_states, |
|
dropout, |
|
softmax_scale=softmax_scale, |
|
causal=True, |
|
) |
|
|
|
return attn_output |
|
|
|
|
|
class MoonshotDecoderLayer(nn.Module): |
|
def __init__(self, config: KimiAudioConfig): |
|
super().__init__() |
|
self.hidden_size = config.hidden_size |
|
self.config = config |
|
|
|
logger.warning_once("using normal flash attention") |
|
self.self_attn = MoonshotAttention(config=config) |
|
|
|
self.mlp = Qwen2MLP(config) |
|
self.input_layernorm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.post_attention_layernorm = Qwen2RMSNorm( |
|
config.hidden_size, eps=config.rms_norm_eps |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_value: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
use_cache: Optional[bool] = False, |
|
padding_mask: Optional[torch.LongTensor] = None, |
|
) -> Tuple[ |
|
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] |
|
]: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding |
|
(see `past_key_values`). |
|
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states |
|
""" |
|
|
|
residual = hidden_states |
|
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
padding_mask=padding_mask, |
|
) |
|
hidden_states = residual + hidden_states |
|
|
|
|
|
residual = hidden_states |
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
hidden_states = self.mlp(hidden_states) |
|
hidden_states = residual + hidden_states |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (self_attn_weights,) |
|
|
|
if use_cache: |
|
outputs += (present_key_value,) |
|
|
|
return outputs |
|
|
|
|
|
class VQAdaptor(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.layers = nn.Sequential( |
|
nn.Linear(config.kimia_adaptor_input_dim, config.hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Dropout(0.0), |
|
nn.Linear(config.hidden_size, config.hidden_size, bias=True), |
|
nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, bias=True), |
|
) |
|
|
|
def forward(self, x): |
|
return self.layers(x) |
|
|
|
|
|
class MoonshotKimiaModel(Qwen2PreTrainedModel): |
|
""" |
|
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`QwenDecoderLayer`] |
|
|
|
Args: |
|
config: KimiAudioConfig |
|
""" |
|
|
|
config_class = KimiAudioConfig |
|
|
|
def __init__(self, config: KimiAudioConfig): |
|
super().__init__(config) |
|
self.padding_idx = config.pad_token_id |
|
self.vocab_size = config.vocab_size |
|
self.kimia_mimo_transformer_from_layer_index = ( |
|
config.kimia_mimo_transformer_from_layer_index |
|
) |
|
|
|
self.embed_tokens = nn.Embedding( |
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
) |
|
self.layers = nn.ModuleList( |
|
[MoonshotDecoderLayer(config) for _ in range(config.num_hidden_layers)] |
|
) |
|
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
self.mimo_layers = nn.ModuleList( |
|
[MoonshotDecoderLayer(config) for _ in range(config.kimia_mimo_layers)] |
|
) |
|
self.mimo_norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
self.use_whisper_feature = config.use_whisper_feature |
|
if self.use_whisper_feature: |
|
self.vq_adaptor = VQAdaptor(config) |
|
self.kimia_media_begin = config.kimia_media_begin |
|
self.kimia_media_end = config.kimia_media_end |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_tokens = value |
|
|
|
|
|
def _prepare_decoder_attention_mask( |
|
self, attention_mask, input_shape, inputs_embeds, past_key_values_length |
|
): |
|
|
|
|
|
combined_attention_mask = None |
|
if input_shape[-1] > 1: |
|
combined_attention_mask = _make_causal_mask( |
|
input_shape, |
|
inputs_embeds.dtype, |
|
device=inputs_embeds.device, |
|
past_key_values_length=past_key_values_length, |
|
) |
|
|
|
if attention_mask is not None: |
|
|
|
expanded_attn_mask = _expand_mask( |
|
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] |
|
).to(inputs_embeds.device) |
|
combined_attention_mask = ( |
|
expanded_attn_mask |
|
if combined_attention_mask is None |
|
else expanded_attn_mask + combined_attention_mask |
|
) |
|
|
|
return combined_attention_mask |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
text_input_ids: torch.LongTensor = None, |
|
whisper_input_feature: Optional[torch.FloatTensor] = None, |
|
is_continuous_mask: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError( |
|
"You cannot specify both input_ids and inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
batch_size, seq_length = input_ids.shape |
|
elif inputs_embeds is not None: |
|
batch_size, seq_length, _ = inputs_embeds.shape |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
seq_length_with_past = seq_length |
|
past_key_values_length = 0 |
|
|
|
if past_key_values is not None: |
|
past_key_values_length = past_key_values[0][0].shape[2] |
|
seq_length_with_past = seq_length_with_past + past_key_values_length |
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange( |
|
past_key_values_length, |
|
seq_length + past_key_values_length, |
|
dtype=torch.long, |
|
device=device, |
|
) |
|
position_ids = position_ids.unsqueeze(0) |
|
|
|
if inputs_embeds is None: |
|
|
|
input_ids = input_ids.to(torch.cuda.current_device()) |
|
text_input_ids = text_input_ids.to(torch.cuda.current_device()) |
|
audio_emb = self.embed_tokens(input_ids) |
|
if self.use_whisper_feature and whisper_input_feature is not None: |
|
if not isinstance(whisper_input_feature, list): |
|
whisper_input_feature = whisper_input_feature.squeeze(0) |
|
whisper_input_feature = [whisper_input_feature] |
|
|
|
media_start_idx = (input_ids == self.kimia_media_begin).nonzero() |
|
media_end_idx = (input_ids == self.kimia_media_end).nonzero() |
|
|
|
whisper_input_dim = whisper_input_feature[0].shape[-1] |
|
whisper_dtype = whisper_input_feature[0].dtype |
|
expanded_whisper = ( |
|
torch.zeros(audio_emb.shape[1], whisper_input_dim) |
|
.to(torch.cuda.current_device()) |
|
.to(whisper_dtype) |
|
) |
|
for (seg_idx, start_idx), (_, end_idx) in zip( |
|
media_start_idx, media_end_idx |
|
): |
|
|
|
|
|
feat_len = end_idx - (start_idx + 1) |
|
whisper_input_feature_i = whisper_input_feature[seg_idx].squeeze(0) |
|
assert feat_len == is_continuous_mask[seg_idx].sum() |
|
expanded_whisper[start_idx + 1 : end_idx, :] = ( |
|
whisper_input_feature_i[:feat_len, :] |
|
) |
|
|
|
expanded_whisper = expanded_whisper.unsqueeze(0) |
|
whisper_emb = self.vq_adaptor( |
|
expanded_whisper.transpose(0, 1) |
|
).transpose(0, 1) |
|
is_continuous_mask = is_continuous_mask.to(torch.cuda.current_device()) |
|
whisper_emb = whisper_emb.to(torch.cuda.current_device()) |
|
whisper_emb = whisper_emb * is_continuous_mask[:, :, None] |
|
|
|
encoder_input_addwith_discrete_token = ( |
|
audio_emb + whisper_emb |
|
) * torch.sqrt( |
|
torch.tensor( |
|
2.0, dtype=whisper_emb.dtype, device=torch.cuda.current_device() |
|
) |
|
) |
|
audio_emb = ( |
|
audio_emb * (~is_continuous_mask[:, :, None]) |
|
+ encoder_input_addwith_discrete_token |
|
* is_continuous_mask[:, :, None] |
|
) |
|
if text_input_ids is not None and text_input_ids.sum() != 0: |
|
inputs_embeds = audio_emb + self.embed_tokens(text_input_ids) |
|
else: |
|
inputs_embeds = audio_emb |
|
|
|
|
|
padding_mask = attention_mask |
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attns = () if output_attentions else None |
|
next_decoder_cache = () if use_cache else None |
|
for idx, decoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
past_key_value = ( |
|
past_key_values[idx] if past_key_values is not None else None |
|
) |
|
layer_outputs = decoder_layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
padding_mask=padding_mask, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
if idx == self.kimia_mimo_transformer_from_layer_index: |
|
mimo_hidden_states = hidden_states.clone() |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
if output_attentions: |
|
all_self_attns += (layer_outputs[1],) |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if output_hidden_states: |
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
for idx, decoder_layer in enumerate(self.mimo_layers): |
|
if output_hidden_states: |
|
all_hidden_states += (mimo_hidden_states,) |
|
|
|
past_key_value = ( |
|
past_key_values[idx + len(self.layers)] |
|
if past_key_values is not None |
|
else None |
|
) |
|
layer_outputs = decoder_layer( |
|
mimo_hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_value=past_key_value, |
|
output_attentions=output_attentions, |
|
use_cache=use_cache, |
|
padding_mask=padding_mask, |
|
) |
|
|
|
mimo_hidden_states = layer_outputs[0] |
|
|
|
if use_cache: |
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],) |
|
|
|
mimo_hidden_states = self.mimo_norm(mimo_hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states += (mimo_hidden_states,) |
|
|
|
next_cache = next_decoder_cache if use_cache else None |
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
mimo_hidden_states, |
|
next_cache, |
|
all_hidden_states, |
|
all_hidden_states, |
|
all_self_attns, |
|
] |
|
if v is not None |
|
) |
|
return BaseModelOutputWithPast( |
|
last_hidden_state=(hidden_states, mimo_hidden_states), |
|
past_key_values=next_cache, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attns, |
|
) |
|
|
|
|
|
class MoonshotKimiaForCausalLM(Qwen2PreTrainedModel): |
|
_tied_weights_keys = ["lm_head.weight", "mimo_output.weight"] |
|
config_class = KimiAudioConfig |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.model = MoonshotKimiaModel(config) |
|
self.vocab_size = config.vocab_size |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
self.mimo_output = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.embed_tokens |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.embed_tokens = value |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model = decoder |
|
|
|
def get_decoder(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
text_input_ids: torch.LongTensor = None, |
|
whisper_input_feature: Optional[torch.FloatTensor] = None, |
|
is_continuous_mask: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
generation_mode: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
|
output_attentions = ( |
|
output_attentions |
|
if output_attentions is not None |
|
else self.config.output_attentions |
|
) |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
text_input_ids=text_input_ids, |
|
whisper_input_feature=whisper_input_feature, |
|
is_continuous_mask=is_continuous_mask, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
if return_dict: |
|
hidden_states, mimo_hidden_states = ( |
|
outputs.last_hidden_state[0], |
|
outputs.last_hidden_state[1], |
|
) |
|
else: |
|
hidden_states, mimo_hidden_states = outputs[0], outputs[1] |
|
|
|
audio_logits = self.lm_head(hidden_states) |
|
text_logits = self.mimo_output(mimo_hidden_states) |
|
|
|
if not return_dict: |
|
output = (text_logits, audio_logits) + outputs[2:] |
|
return output |
|
return CausalLMOutputWithPast( |
|
loss=None, |
|
logits=(text_logits, audio_logits), |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|