diff --git "a/modeling_kimi_vl.py" "b/modeling_kimi_vl.py" new file mode 100644--- /dev/null +++ "b/modeling_kimi_vl.py" @@ -0,0 +1,2610 @@ +# coding=utf-8 +# Copyright 2025 The Moonshot AI Team, DeepSeek-AI, and HuggingFace Inc. team. All rights reserved. +# +# The code is based on llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py), but modified for KimiVL. +# +# Licensing Information: +# - Code derived from llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py) is licensed under the Apache License, Version 2.0. +# - Other parts of the code are licensed under the MIT License. +# +# Apache License, Version 2.0: +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# MIT License: +# Permission is hereby granted, free of charge, to any person obtaining a copy +# of this software and associated documentation files (the "Software"), to deal +# in the Software without restriction, including without limitation the rights +# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +# copies of the Software, and to permit persons to whom the Software is +# furnished to do so, subject to the following conditions: +# +# The above copyright notice and this permission notice shall be included in all +# copies or substantial portions of the Software. +# +# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +# SOFTWARE. +"""PyTorch KimiVL model.""" + +import math +import warnings +from typing import List, Optional, Tuple, Union +from copy import deepcopy +from functools import cached_property +from typing import Union, Tuple, Sequence, Optional, List + +import numpy as np +import torch +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.checkpoint +import torch.distributed as dist +from torch.nn import CrossEntropyLoss +from transformers.activations import GELUActivation, ACT2FN, PytorchGELUTanh +from transformers.cache_utils import Cache, DynamicCache +from transformers.modeling_utils import ( + PreTrainedModel, + GenerationMixin, +) +from transformers.models.llava.modeling_llava import LlavaCausalLMOutputWithPast +from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask +from transformers.modeling_outputs import ( + BaseModelOutputWithPast, + CausalLMOutputWithPast, +) +from transformers.pytorch_utils import ( + ALL_LAYERNORM_LAYERS, + is_torch_greater_or_equal_than_1_13, +) +from transformers.utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from transformers.utils.import_utils import is_torch_fx_available + +from .configuration_kimi_vl import MoonViTConfig, DeepseekV3Config, KimiVLConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph. +# It means that the function will not be traced through and simply appear as a node in the graph. +if is_torch_fx_available(): + if not is_torch_greater_or_equal_than_1_13: + import torch.fx + + _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) + + +logger = logging.get_logger(__name__) + + +def multihead_attention( + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + q_cu_seqlens: Optional[torch.Tensor] = None, + k_cu_seqlens: Optional[torch.Tensor] = None, +): + """Multi-head attention using flash attention 2. + + Args: + q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), + or (tot_seqlens, num_heads, head_dim) if packing. + q_cu_seqlens (torch.Tensor): cumulative sequence lengths of q. + The first element should be 0 and the last element should be q.shape[0]. + k_cu_seqlens (torch.Tensor): cumulative sequence lengths of k. + The first element should be 0 and the last element should be k.shape[0]. + + Returns: + output: shape (batch_size, seqlen, dim) or (tot_seqlens, dim) if packing, + where dim = num_heads * head_dim + """ + # Unified format legal check + assert q.dim() == k.dim() == v.dim() == 3, "q, k, v must have 3 dims" + assert q_cu_seqlens[-1] == q.shape[0], "q_cu_seqlens must sum to q.shape[0]" + assert ( + k_cu_seqlens[-1] == k.shape[0] == v.shape[0] + ), "k_cu_seqlens must sum to k.shape[0]" + assert q.dtype in [ + torch.bfloat16, + torch.float16, + ], f"unsupported dtype {q.dtype} for multihead attn" + + max_seqlen_q = (q_cu_seqlens[1:] - q_cu_seqlens[:-1]).max().item() + max_seqlen_k = (k_cu_seqlens[1:] - k_cu_seqlens[:-1]).max().item() + attn_out = flash_attn_varlen_func( + q, + k, + v, + q_cu_seqlens, + k_cu_seqlens, + max_seqlen_q, + max_seqlen_k, + causal=False, + ) + attn_out = attn_out.flatten(start_dim=-2) + + return attn_out + + +def sdpa_attention( + q: torch.Tensor, + k: torch.Tensor, + v: torch.Tensor, + q_cu_seqlens: Optional[torch.Tensor] = None, + k_cu_seqlens: Optional[torch.Tensor] = None, +) -> torch.Tensor: + """SDPA attention. + + Args: + q, k, v: tensor of shape (batch_size, seqlen, num_heads, head_dim), + or (tot_seqlens, num_heads, head_dim) if packing. + """ + seq_length = q.shape[0] + attention_mask = torch.zeros( + [1, seq_length, seq_length], device=q.device, dtype=torch.bool + ) + for i in range(1, len(q_cu_seqlens)): + attention_mask[ + ..., + q_cu_seqlens[i - 1] : q_cu_seqlens[i], + q_cu_seqlens[i - 1] : q_cu_seqlens[i], + ] = True + q = q.transpose(0, 1) + k = k.transpose(0, 1) + v = v.transpose(0, 1) + attn_output = F.scaled_dot_product_attention(q, k, v, attention_mask, dropout_p=0.0) + attn_output = attn_output.transpose(0, 1) + attn_output = attn_output.reshape(seq_length, -1) + return attn_output + + +VL_VISION_ATTENTION_FUNCTIONS = { + "flash_attention_2": multihead_attention, + "sdpa": sdpa_attention, +} + + +def _apply_rope_input_validation(x, freqs_cis): + assert x.ndim == freqs_cis.ndim + 1, (x.shape, freqs_cis.shape) + assert x.shape[:-2] == freqs_cis.shape[:-1], (x.shape, freqs_cis.shape) + assert x.shape[-1] == 2 * freqs_cis.shape[-1], (x.shape, freqs_cis.shape) + assert freqs_cis.dtype == torch.complex64, freqs_cis.dtype + + +def apply_rope( + xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor +) -> tuple[torch.Tensor, torch.Tensor]: + """ + Args: (The leading dimensions of all inputs should be the same) + xq: query, tensor of shape (..., num_heads, head_dim) + xk: key, tensor of shape (..., num_heads, head_dim) + freqs_cis: tensor of shape (..., head_dim/2), dtype=torch.complex64. It contains the precomputed cis(freqs) for each position in the 2D grid. + Returns: + xq_out, xk_out: tensors of shape (..., num_heads, head_dim) + """ + _apply_rope_input_validation(xq, freqs_cis) + _apply_rope_input_validation(xk, freqs_cis) + + freqs_cis = freqs_cis.unsqueeze(-2) # ..., 1, head_dim/2 + # ..., num_heads, head_dim/2 + xq_ = torch.view_as_complex(xq.float().view(*xq.shape[:-1], -1, 2)) + xk_ = torch.view_as_complex(xk.float().view(*xq.shape[:-1], -1, 2)) + xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim + xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(-2) # ..., num_heads, head_dim + return xq_out.type_as(xq), xk_out.type_as(xk) + + +class Learnable2DInterpPosEmb(nn.Module): + def __init__( + self, height: int, width: int, dim: int, interpolation_mode: str = "bicubic" + ) -> None: + super().__init__() + self.height = height + self.width = width + self.interpolation_mode = interpolation_mode + self.weight = nn.Parameter(torch.empty(height, width, dim)) + self.reset_parameters() + + def reset_parameters(self): + nn.init.normal_(self.weight) + + def forward(self, x: torch.Tensor, grid_hws: torch.Tensor) -> torch.Tensor: + pos_embs = [] + for shape in grid_hws.tolist(): + if shape == self.weight.shape[:-1]: + pos_embs.append(self.weight.flatten(end_dim=1)) + else: + pos_embs.append( + F.interpolate( + self.weight.permute((2, 0, 1)).unsqueeze(0), + size=shape, + mode=self.interpolation_mode, + ) + .squeeze(0) + .permute((1, 2, 0)) + .flatten(end_dim=1) + ) + out = x + torch.cat(pos_embs) + return out + + +class MoonVisionPatchEmbed(nn.Module): + + def __init__( + self, + out_dim: int, + in_dim: int = 3, + patch_size: Union[int, Tuple[int, int]] = (14, 14), + pos_emb_height: int = 14, + pos_emb_width: int = 14, + ): + super().__init__() + assert isinstance( + patch_size, (int, Sequence) + ), f"Invalid patch_size type: {type(patch_size)}" + if isinstance(patch_size, int): + patch_size = (patch_size, patch_size) + assert ( + len(patch_size) == 2 + ), f"Expected patch_size to be a tuple of 2, got {patch_size}" + self.patch_size = patch_size + + self.proj = nn.Conv2d( + in_dim, out_dim, kernel_size=patch_size, stride=patch_size + ) + + self.pos_emb = Learnable2DInterpPosEmb( + height=pos_emb_height, width=pos_emb_width, dim=out_dim + ) + + def forward(self, x: torch.Tensor, grid_hw: torch.Tensor) -> torch.Tensor: + """ + Args: + x (L, Channels): input tensor + grid_hw (N, 2): grid height and width + + Returns: + (L, Cout) tensor + """ + x = self.proj(x).view(x.size(0), -1) + # apply positional embedding + x = self.pos_emb(x, grid_hw) + return x + + +class Rope2DPosEmb(nn.Module): + """2D rotary position embedding with multi-resolution support. + + This class is intended to be used in the following way: + 1. Before training, create an instance of Rope2DPosEmb. This instance will hold the precomputed cis. + 2. Before each forward pass, call `get_freqs_cis_by_*` to get the `freqs_cis` tensor for this iteration. + 3. During the forward pass, pass the `freqs_cis` tensor to each attention layer, and call `apply` just before each attention operation. + The rope is shared across all attention layers and all heads. + + Refs: + - RoFormer: https://arxiv.org/abs/2104.09864 + - VisionLLaMA: https://arxiv.org/abs/2403.00522 + - https://github.com/Meituan-AutoML/VisionLLaMA/blob/main/dit/models.py + + Args: + dim (int): usually the multi-head attention dimension, should be divisible by 4 (TODO: relax this constraint if needed) + max_height (int): the maximum height of the 2D grid + max_width (int): the maximum width of the 2D grid + theta_base (float): the base of the theta + device (str): the device to store the precomputed cis + """ + + def __init__( + self, dim: int, max_height: int, max_width: int, theta_base=10000, device="cuda" + ): + super().__init__() + self.dim = dim + assert self.dim % 4 == 0, "dim must be divisible by 4" + self.max_height = max_height + self.max_width = max_width + self.theta_base = theta_base + self.device = device + + def extra_repr(self): + return f"dim={self.dim}, max_height={self.max_height}, max_width={self.max_width}, theta_base={self.theta_base}" + + @cached_property + def precomputed_freqs_cis(self) -> torch.Tensor: + """Calculate the cis(freqs) for each position in the 2D grid. + + Return: complex tensor of shape (max_height, max_width, dim//2) and value: + height axis: ret[h, w, 2*i] = cis(h * theta_base**(-4*i/dim)) + weight axis: ret[h, w, 2*i+1] = cis(w * theta_base**(-4*i/dim)) with (i in [0, dim//4)) + note: `cis` is a mathematical notation defined by cis x = cos x + i sin x, + """ + N = self.max_height * self.max_width + flat_pos = torch.arange(0, N).float().to(self.device) + x_pos = flat_pos % self.max_width + y_pos = flat_pos // self.max_width + dim_range = ( + torch.arange(0, self.dim, 4)[: (self.dim // 4)].float().to(self.device) + ) # C/4 + freqs = 1.0 / (self.theta_base ** (dim_range / self.dim)) + x_freqs = torch.outer(x_pos, freqs).float() # N, C/4 + y_freqs = torch.outer(y_pos, freqs).float() # N, C/4 + x_cis = torch.polar(torch.ones_like(x_freqs), x_freqs) # N, C/4 + y_cis = torch.polar(torch.ones_like(y_freqs), y_freqs) # N, C/4 + # N, C/4, 2 + freqs_cis = torch.cat( + [x_cis.unsqueeze(dim=-1), y_cis.unsqueeze(dim=-1)], dim=-1 + ) + # max_height, max_width, C/2 + freqs_cis = freqs_cis.reshape(self.max_height, self.max_width, -1) + return freqs_cis + + def get_freqs_cis_by_seqlens(self, grid_hws: torch.Tensor) -> torch.Tensor: + """ + Args: + grid_hws (torch.Tensor): containing list of (height, width) or (t, height, width) tuples. + Returns: + freqs_cis: tensor of shape (sum(t * height * width), dim//2) + """ + shapes = grid_hws.tolist() + assert all( + 1 <= h <= self.max_height and 1 <= w <= self.max_width for h, w in shapes + ), ( + shapes, + self.max_height, + self.max_width, + ) + freqs_cis = torch.cat( + [ + self.precomputed_freqs_cis[:h, :w].reshape(-1, self.dim // 2) + for h, w in shapes + ], + dim=0, + ) + return freqs_cis + + def get_freqs_cis_by_idx( + self, pos_idx: torch.Tensor, pos_idx_mask: torch.Tensor + ) -> torch.Tensor: + """ + Args: + pos_idx: tensor of shape (..., 2), It contains the (h, w) position indices of each 2D token. + pos_idx_mask: a mask of shape (...), the leading dimensions should be the same as pos_idx. + Rope will only be applied to the tokens with True mask. `freqs_cis` for the tokens with False mask with be ones. + Return: + freqs_cis: tensor of shape (..., dim//2) + """ + assert ( + pos_idx.shape[:-1] == pos_idx_mask.shape + and pos_idx.shape[-1] == 2 + and pos_idx.ndim == pos_idx_mask.ndim + 1 + ), (pos_idx.shape, pos_idx_mask.shape) + assert pos_idx_mask.dtype == torch.bool, pos_idx_mask.dtype + + shp = pos_idx_mask.shape + (self.dim // 2,) # ..., head_dim/2 + freqs_cis = torch.ones( + shp, dtype=torch.complex64, device=self.device + ) # ..., head_dim/2 + freqs_cis[pos_idx_mask] = self.precomputed_freqs_cis[ + pos_idx[..., 0][pos_idx_mask], pos_idx[..., 1][pos_idx_mask] + ] + return freqs_cis + + +class MLP2(nn.Module): + """ + Args: + dims: [in_dim, hidden_dim, out_dim] + bias: whether to use bias in linear layer. + """ + + def __init__(self, dims: list[int], activation, bias=True): + super().__init__() + assert len(dims) == 3 + self.fc0 = nn.Linear(dims[0], dims[1], bias=bias) + self.fc1 = nn.Linear(dims[1], dims[2], bias=bias) + self.activation = activation + for m in [self.fc0, self.fc1]: + nn.init.trunc_normal_(m.weight, std=math.sqrt(2 / m.in_features)) + if m.bias is not None: + nn.init.zeros_(m.bias) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + x = self.fc0(x) + x = self.activation(x) + return self.fc1(x) + + +class MoonVitEncoderLayer(nn.Module): + + def __init__( + self, + num_heads: int, + hidden_dim: int, + mlp_dim: int, + *, + attn_implementation: str = "sdpa", + activation=F.gelu, + attn_bias: bool = False, + ): + super().__init__() + self.num_heads = num_heads + self.hidden_dim = hidden_dim + self.hidden_size_per_attention_head = self.hidden_dim // self.num_heads + self.attn_implementation = attn_implementation + + self.norm0 = nn.LayerNorm(hidden_dim) + self.norm1 = nn.LayerNorm(hidden_dim) + self.mlp = MLP2([hidden_dim, mlp_dim, hidden_dim], activation) + self.wqkv = nn.Linear(hidden_dim, hidden_dim * 3, bias=attn_bias) + self.wo = nn.Linear(hidden_dim, hidden_dim, bias=attn_bias) + + def attention_qkvpacked( + self, + x: torch.Tensor, + cu_seqlens: torch.Tensor, + rope_freqs_cis: Optional[torch.Tensor] = None, + ): + """ + Args: + x (torch.Tensor): (batch_size, seqlen, hidden_dim) + cu_seqlens (torch.Tensor): + """ + xqkv = self.wqkv(x) + + qkv_shape = xqkv.size()[:-1] + ( + 3, + self.num_heads, + self.hidden_size_per_attention_head, + ) + # xqkv: (batch_size, seqlen, 3, nheads, headdim) + xqkv = xqkv.view(*qkv_shape) + xq, xk, xv = torch.unbind(xqkv, dim=-3) + + xq, xk = apply_rope(xq, xk, rope_freqs_cis) + + attn_func = VL_VISION_ATTENTION_FUNCTIONS[self.attn_implementation] + attn_out = attn_func( + xq, xk, xv, q_cu_seqlens=cu_seqlens, k_cu_seqlens=cu_seqlens + ) + + attn_out = self.wo(attn_out) + return attn_out + + def forward( + self, + hidden_states: torch.Tensor, + cu_seqlens: torch.Tensor, + rope_freqs_cis: Union[torch.Tensor, None] = None, + ) -> torch.Tensor: + """ + Args: + hidden_states: non-packed (B, N, D) or packed (L, D). if non-packed, seqlens should be None, if packed, seqlens should be set + + Returns: + output: same shape of input, non-packed (B, N, D) for non-packed input, (L, D) for packed input + """ + residual = hidden_states + hidden_states = self.norm0(hidden_states) + attn_out = self.attention_qkvpacked( + hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis + ) + hidden_states = residual + attn_out + + residual = hidden_states + hidden_states = self.mlp(self.norm1(hidden_states)) + hidden_states = residual + hidden_states + return hidden_states + + +class MoonVitEncoder(nn.Module): + + def __init__( + self, + hidden_dim: int, + num_layers: int, + block_cfg: dict, + ) -> None: + super().__init__() + + self.rope_2d = Rope2DPosEmb( + block_cfg["hidden_dim"] // block_cfg["num_heads"], 512, 512 + ) + self.blocks = nn.ModuleList( + [MoonVitEncoderLayer(**block_cfg) for _ in range(num_layers)] + ) + self.final_layernorm = nn.LayerNorm(hidden_dim) + + def forward( + self, hidden_states: torch.Tensor, grid_hw: torch.Tensor + ) -> torch.Tensor: + rope_freqs_cis = self.rope_2d.get_freqs_cis_by_seqlens(grid_hws=grid_hw) + + lengths = torch.cat( + ( + torch.zeros(1, device=hidden_states.device, dtype=grid_hw.dtype), + grid_hw[:, 0] * grid_hw[:, 1], + ) + ) + cu_seqlens = lengths.cumsum(dim=0, dtype=torch.int32) + + for _, block in enumerate(self.blocks): + hidden_states = block( + hidden_states, cu_seqlens, rope_freqs_cis=rope_freqs_cis + ) + + hidden_states = self.final_layernorm(hidden_states) + + return hidden_states + + +def patch_merger( + x: torch.Tensor, + grid_hw: torch.Tensor, + merge_kernel_size: list[int, int] = (2, 2), +) -> List[torch.Tensor]: + d_model = x.size(-1) + + outputs = [] + pre_sum = 0 + for x_shape in grid_hw.tolist(): + height, width = x_shape[0], x_shape[1] + # Get the current sequence + seq = x[pre_sum : pre_sum + height * width] + # Reshape along self.merge_kernel_size and concat to the last dimension + kernel_height, kernel_width = merge_kernel_size + new_height, new_width = height // kernel_height, width // kernel_width + reshaped_seq = seq.view( + new_height, kernel_height, new_width, kernel_width, d_model + ) + reshaped_seq = reshaped_seq.permute(0, 2, 1, 3, 4).contiguous() + padded_seq = reshaped_seq.view( + new_height * new_width, kernel_height * kernel_width, -1 + ) + outputs.append(padded_seq) + pre_sum += height * width + + return outputs + + +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad( + torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) + ) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +class DeepseekV3RMSNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + DeepseekV3RMSNorm is equivalent to T5LayerNorm + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + input_dtype = hidden_states.dtype + hidden_states = hidden_states.to(torch.float32) + variance = hidden_states.pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + return self.weight * hidden_states.to(input_dtype) + + +class DeepseekV3RotaryEmbedding(nn.Module): + def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): + super().__init__() + + self.dim = dim + self.max_position_embeddings = max_position_embeddings + self.base = base + inv_freq = 1.0 / ( + self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + # Build here to make `torch.jit.trace` work. + self._set_cos_sin_cache( + seq_len=max_position_embeddings, + device=self.inv_freq.device, + dtype=torch.get_default_dtype(), + ) + self.max_seq_len_cached = None + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq.to(t.device)) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + def forward(self, x, seq_len=None): + # x: [bs, num_attention_heads, seq_len, head_size] + if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: + self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) + + return ( + self.cos_cached[:seq_len].to(dtype=x.dtype), + self.sin_cached[:seq_len].to(dtype=x.dtype), + ) + + +# Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3 +class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): + """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + t = t / self.scaling_factor + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3 +class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): + """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + ): + self.scaling_factor = scaling_factor + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + + if seq_len > self.max_position_embeddings: + base = self.base * ( + (self.scaling_factor * seq_len / self.max_position_embeddings) + - (self.scaling_factor - 1) + ) ** (self.dim / (self.dim - 2)) + inv_freq = 1.0 / ( + base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) + ) + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange( + self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype + ) + + freqs = torch.outer(t, self.inv_freq) + # Different from paper, but it uses a different permutation in order to obtain the same calculation + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) + self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) + + +# Inverse dim formula to find dim based on number of rotations +def yarn_find_correction_dim( + num_rotations, dim, base=10000, max_position_embeddings=2048 +): + return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( + 2 * math.log(base) + ) + + +# Find dim range bounds based on rotations +def yarn_find_correction_range( + low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 +): + low = math.floor( + yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) + ) + high = math.ceil( + yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) + ) + return max(low, 0), min(high, dim - 1) # Clamp values just in case + + +def yarn_get_mscale(scale=1, mscale=1): + if scale <= 1: + return 1.0 + return 0.1 * mscale * math.log(scale) + 1.0 + + +def yarn_linear_ramp_mask(min, max, dim): + if min == max: + max += 0.001 # Prevent singularity + + linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) + ramp_func = torch.clamp(linear_func, 0, 1) + return ramp_func + + +class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding): + + def __init__( + self, + dim, + max_position_embeddings=2048, + base=10000, + device=None, + scaling_factor=1.0, + original_max_position_embeddings=4096, + beta_fast=32, + beta_slow=1, + mscale=1, + mscale_all_dim=0, + ): + self.scaling_factor = scaling_factor + self.original_max_position_embeddings = original_max_position_embeddings + self.beta_fast = beta_fast + self.beta_slow = beta_slow + self.mscale = mscale + self.mscale_all_dim = mscale_all_dim + super().__init__(dim, max_position_embeddings, base, device) + + def _set_cos_sin_cache(self, seq_len, device, dtype): + self.max_seq_len_cached = seq_len + dim = self.dim + + freq_extra = 1.0 / ( + self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + freq_inter = 1.0 / ( + self.scaling_factor + * self.base + ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) + ) + + low, high = yarn_find_correction_range( + self.beta_fast, + self.beta_slow, + dim, + self.base, + self.original_max_position_embeddings, + ) + inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( + device=device, dtype=torch.float32 + ) + inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask + self.register_buffer("inv_freq", inv_freq, persistent=False) + + t = torch.arange(seq_len, device=device, dtype=torch.float32) + + freqs = torch.outer(t, inv_freq) + + _mscale = float( + yarn_get_mscale(self.scaling_factor, self.mscale) + / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) + ) + + emb = torch.cat((freqs, freqs), dim=-1) + self.register_buffer( + "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False + ) + self.register_buffer( + "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False + ) + + +# Copied from transformers.models.llama.modeling_llama.rotate_half +def rotate_half(x): + """Rotates half the hidden dims of the input.""" + x1 = x[..., : x.shape[-1] // 2] + x2 = x[..., x.shape[-1] // 2 :] + return torch.cat((-x2, x1), dim=-1) + + +# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb +def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): + """Applies Rotary Position Embedding to the query and key tensors. + + Args: + q (`torch.Tensor`): The query tensor. + k (`torch.Tensor`): The key tensor. + cos (`torch.Tensor`): The cosine part of the rotary embedding. + sin (`torch.Tensor`): The sine part of the rotary embedding. + position_ids (`torch.Tensor`): + The position indices of the tokens corresponding to the query and key tensors. For example, this can be + used to pass offsetted position ids when working with a KV-cache. + unsqueeze_dim (`int`, *optional*, defaults to 1): + The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and + sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note + that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and + k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes + cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have + the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. + Returns: + `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. + """ + cos = cos[position_ids].unsqueeze(unsqueeze_dim) + sin = sin[position_ids].unsqueeze(unsqueeze_dim) + + b, h, s, d = q.shape + q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + b, h, s, d = k.shape + k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) + + q_embed = (q * cos) + (rotate_half(q) * sin) + k_embed = (k * cos) + (rotate_half(k) * sin) + return q_embed, k_embed + + +class DeepseekV3MLP(nn.Module): + def __init__(self, config, hidden_size=None, intermediate_size=None): + super().__init__() + self.config = config + self.hidden_size = config.hidden_size if hidden_size is None else hidden_size + self.intermediate_size = ( + config.intermediate_size if intermediate_size is None else intermediate_size + ) + + self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) + self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) + self.act_fn = ACT2FN[config.hidden_act] + + def forward(self, x): + down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) + return down_proj + + +class MoEGate(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.top_k = config.num_experts_per_tok + self.n_routed_experts = config.n_routed_experts + self.routed_scaling_factor = config.routed_scaling_factor + self.scoring_func = config.scoring_func + self.seq_aux = config.seq_aux + self.topk_method = config.topk_method + self.n_group = config.n_group + self.topk_group = config.topk_group + + # topk selection algorithm + self.norm_topk_prob = config.norm_topk_prob + self.gating_dim = config.hidden_size + self.weight = nn.Parameter( + torch.empty((self.n_routed_experts, self.gating_dim)) + ) + if self.topk_method == "noaux_tc": + self.e_score_correction_bias = nn.Parameter( + torch.empty((self.n_routed_experts)) + ) + self.reset_parameters() + + def reset_parameters(self) -> None: + import torch.nn.init as init + + init.kaiming_uniform_(self.weight, a=math.sqrt(5)) + + def forward(self, hidden_states): + bsz, seq_len, h = hidden_states.shape + # compute gating score + hidden_states = hidden_states.view(-1, h) + logits = F.linear( + hidden_states.type(torch.float32), self.weight.type(torch.float32), None + ) + if self.scoring_func == "sigmoid": + scores = logits.sigmoid() + else: + raise NotImplementedError( + f"insupportable scoring function for MoE gating: {self.scoring_func}" + ) + + # select top-k experts + if self.topk_method == "noaux_tc": + assert not self.training + scores_for_choice = scores.view( + bsz * seq_len, -1 + ) + self.e_score_correction_bias.unsqueeze(0) + group_scores = ( + scores_for_choice.view(bsz * seq_len, self.n_group, -1) + .topk(2, dim=-1)[0] + .sum(dim=-1) + ) # [n, n_group] + group_idx = torch.topk( + group_scores, k=self.topk_group, dim=-1, sorted=False + )[ + 1 + ] # [n, top_k_group] + group_mask = torch.zeros_like(group_scores) # [n, n_group] + group_mask.scatter_(1, group_idx, 1) # [n, n_group] + score_mask = ( + group_mask.unsqueeze(-1) + .expand( + bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group + ) + .reshape(bsz * seq_len, -1) + ) # [n, e] + tmp_scores = scores_for_choice.masked_fill( + ~score_mask.bool(), 0.0 + ) # [n, e] + _, topk_idx = torch.topk(tmp_scores, k=self.top_k, dim=-1, sorted=False) + topk_weight = scores.gather(1, topk_idx) + else: + raise NotImplementedError( + f"insupportable TopK function for MoE gating: {self.topk_method}" + ) + + # norm gate to sum 1 + if self.top_k > 1 and self.norm_topk_prob: + denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 + topk_weight = topk_weight / denominator + topk_weight = ( + topk_weight * self.routed_scaling_factor + ) # must multiply the scaling factor + + return topk_idx, topk_weight + + +class DeepseekV3MoE(nn.Module): + """ + A mixed expert module containing shared experts. + """ + + def __init__(self, config): + super().__init__() + self.config = config + self.num_experts_per_tok = config.num_experts_per_tok + + if hasattr(config, "ep_size") and config.ep_size > 1: + assert config.ep_size == dist.get_world_size() + self.ep_size = config.ep_size + self.experts_per_rank = config.n_routed_experts // config.ep_size + self.ep_rank = dist.get_rank() + self.experts = nn.ModuleList( + [ + ( + DeepseekV3MLP( + config, intermediate_size=config.moe_intermediate_size + ) + if i >= self.ep_rank * self.experts_per_rank + and i < (self.ep_rank + 1) * self.experts_per_rank + else None + ) + for i in range(config.n_routed_experts) + ] + ) + else: + self.ep_size = 1 + self.experts_per_rank = config.n_routed_experts + self.ep_rank = 0 + self.experts = nn.ModuleList( + [ + DeepseekV3MLP( + config, intermediate_size=config.moe_intermediate_size + ) + for i in range(config.n_routed_experts) + ] + ) + self.gate = MoEGate(config) + if config.n_shared_experts is not None: + intermediate_size = config.moe_intermediate_size * config.n_shared_experts + self.shared_experts = DeepseekV3MLP( + config=config, intermediate_size=intermediate_size + ) + + def forward(self, hidden_states): + identity = hidden_states + orig_shape = hidden_states.shape + topk_idx, topk_weight = self.gate(hidden_states) + hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) + if not self.training: + y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) + if self.config.n_shared_experts is not None: + y = y + self.shared_experts(identity) + return y + + @torch.no_grad() + def moe_infer(self, x, topk_ids, topk_weight): + cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) + cnts.scatter_(1, topk_ids, 1) + tokens_per_expert = cnts.sum(dim=0) + idxs = topk_ids.view(-1).argsort() + sorted_tokens = x[idxs // topk_ids.shape[1]] + sorted_tokens_shape = sorted_tokens.shape + if self.ep_size > 1: + tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) + tokens_per_expert_group = tokens_per_expert.new_empty( + tokens_per_expert.shape[0] + ) + dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) + output_splits = ( + tokens_per_expert_group.view(self.ep_size, -1) + .sum(1) + .cpu() + .numpy() + .tolist() + ) + gathered_tokens = sorted_tokens.new_empty( + tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] + ) + input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() + dist.all_to_all( + list(gathered_tokens.split(output_splits)), + list(sorted_tokens.split(input_split_sizes)), + ) + tokens_per_expert_post_gather = tokens_per_expert_group.view( + self.ep_size, self.experts_per_rank + ).sum(dim=0) + gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) + s = 0 + for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): + gatherd_idxs[s : s + k] = i % self.experts_per_rank + s += k + gatherd_idxs = gatherd_idxs.argsort() + sorted_tokens = gathered_tokens[gatherd_idxs] + tokens_per_expert = tokens_per_expert_post_gather + tokens_per_expert = tokens_per_expert.cpu().numpy() + + outputs = [] + start_idx = 0 + for i, num_tokens in enumerate(tokens_per_expert): + end_idx = start_idx + num_tokens + if num_tokens == 0: + continue + expert = self.experts[i + self.ep_rank * self.experts_per_rank] + tokens_for_this_expert = sorted_tokens[start_idx:end_idx] + expert_out = expert(tokens_for_this_expert) + outputs.append(expert_out) + start_idx = end_idx + + outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) + if self.ep_size > 1: + new_x = torch.empty_like(outs) + new_x[gatherd_idxs] = outs + gathered_tokens = new_x.new_empty(*sorted_tokens_shape) + dist.all_to_all( + list(gathered_tokens.split(input_split_sizes)), + list(new_x.split(output_splits)), + ) + outs = gathered_tokens + + new_x = torch.empty_like(outs) + new_x[idxs] = outs + final_out = ( + new_x.view(*topk_ids.shape, -1) + .type(topk_weight.dtype) + .mul_(topk_weight.unsqueeze(dim=-1)) + .sum(dim=1) + .type(new_x.dtype) + ) + return final_out + + +# Copied from transformers.models.llama.modeling_llama.repeat_kv +def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: + """ + This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, + num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) + """ + batch, num_key_value_heads, slen, head_dim = hidden_states.shape + if n_rep == 1: + return hidden_states + hidden_states = hidden_states[:, :, None, :, :].expand( + batch, num_key_value_heads, n_rep, slen, head_dim + ) + return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) + + +# Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3 +class DeepseekV3Attention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None): + super().__init__() + self.config = config + self.layer_idx = layer_idx + if layer_idx is None: + logger.warning_once( + f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " + "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " + "when creating this class." + ) + + self.attention_dropout = config.attention_dropout + self.hidden_size = config.hidden_size + self.num_heads = config.num_attention_heads + + self.max_position_embeddings = config.max_position_embeddings + self.rope_theta = config.rope_theta + self.q_lora_rank = config.q_lora_rank + self.qk_rope_head_dim = config.qk_rope_head_dim + self.kv_lora_rank = config.kv_lora_rank + self.v_head_dim = config.v_head_dim + self.qk_nope_head_dim = config.qk_nope_head_dim + self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim + + self.is_causal = True + + if self.q_lora_rank is None: + self.q_proj = nn.Linear( + self.hidden_size, self.num_heads * self.q_head_dim, bias=False + ) + else: + self.q_a_proj = nn.Linear( + self.hidden_size, config.q_lora_rank, bias=config.attention_bias + ) + self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank) + self.q_b_proj = nn.Linear( + config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False + ) + + self.kv_a_proj_with_mqa = nn.Linear( + self.hidden_size, + config.kv_lora_rank + config.qk_rope_head_dim, + bias=config.attention_bias, + ) + self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank) + self.kv_b_proj = nn.Linear( + config.kv_lora_rank, + self.num_heads + * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), + bias=False, + ) + + self.o_proj = nn.Linear( + self.num_heads * self.v_head_dim, + self.hidden_size, + bias=config.attention_bias, + ) + self._init_rope() + + self.softmax_scale = self.q_head_dim ** (-0.5) + if self.config.rope_scaling is not None: + mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) + scaling_factor = self.config.rope_scaling["factor"] + if mscale_all_dim: + mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) + self.softmax_scale = self.softmax_scale * mscale * mscale + + def _init_rope(self): + if self.config.rope_scaling is None: + self.rotary_emb = DeepseekV3RotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + base=self.rope_theta, + ) + else: + scaling_type = self.config.rope_scaling["type"] + scaling_factor = self.config.rope_scaling["factor"] + if scaling_type == "linear": + self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "dynamic": + self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + ) + elif scaling_type == "yarn": + kwargs = { + key: self.config.rope_scaling[key] + for key in [ + "original_max_position_embeddings", + "beta_fast", + "beta_slow", + "mscale", + "mscale_all_dim", + ] + if key in self.config.rope_scaling + } + self.rotary_emb = DeepseekV3YarnRotaryEmbedding( + self.qk_rope_head_dim, + max_position_embeddings=self.max_position_embeddings, + scaling_factor=scaling_factor, + base=self.rope_theta, + **kwargs, + ) + else: + raise ValueError(f"Unknown RoPE scaling type {scaling_type}") + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return ( + tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) + .transpose(1, 2) + .contiguous() + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + if self.layer_idx is None: + raise ValueError( + f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " + "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " + "with a layer index." + ) + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + attn_weights = ( + torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale + ) + + if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): + raise ValueError( + f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" + f" {attn_weights.size()}" + ) + assert attention_mask is not None + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights + attention_mask + + # upcast attention to fp32 + attn_weights = nn.functional.softmax( + attn_weights, dim=-1, dtype=torch.float32 + ).to(query_states.dtype) + attn_weights = nn.functional.dropout( + attn_weights, p=self.attention_dropout, training=self.training + ) + attn_output = torch.matmul(attn_weights, value_states) + + if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.transpose(1, 2).contiguous() + + attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) + + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + +# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3 +class DeepseekV3FlashAttention2(DeepseekV3Attention): + """ + DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Cache] = None, + output_attentions: bool = False, + use_cache: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # DeepseekV3FlashAttention2 attention does not support output_attentions + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + + # overwrite attention_mask with padding_mask + attention_mask = kwargs.pop("padding_mask") + + output_attentions = False + + bsz, q_len, _ = hidden_states.size() + + if self.q_lora_rank is None: + q = self.q_proj(hidden_states) + else: + q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) + q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) + q_nope, q_pe = torch.split( + q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 + ) + + # Flash attention requires the input to have the shape + # batch_size x seq_length x head_dim x hidden_dim + # therefore we just need to keep the original shape + compressed_kv = self.kv_a_proj_with_mqa(hidden_states) + compressed_kv, k_pe = torch.split( + compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 + ) + k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) + kv = ( + self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) + .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) + .transpose(1, 2) + ) + + k_nope, value_states = torch.split( + kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 + ) + kv_seq_len = value_states.shape[-2] + + kv_seq_len = value_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) + + query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + query_states[:, :, :, : self.qk_nope_head_dim] = q_nope + query_states[:, :, :, self.qk_nope_head_dim :] = q_pe + + key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) + key_states[:, :, :, : self.qk_nope_head_dim] = k_nope + key_states[:, :, :, self.qk_nope_head_dim :] = k_pe + + if self.q_head_dim != self.v_head_dim: + value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) + + if past_key_value is not None: + cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models + key_states, value_states = past_key_value.update( + key_states, value_states, self.layer_idx, cache_kwargs + ) + + # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache + # to be able to avoid many of these transpose/reshape/view. + query_states = query_states.transpose(1, 2) + key_states = key_states.transpose(1, 2) + value_states = value_states.transpose(1, 2) + + dropout_rate = self.attention_dropout if self.training else 0.0 + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (DeepseekV3RMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + # Handle the case where the model is quantized + if hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + elif torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + else: + target_dtype = ( + self.q_proj.weight.dtype + if self.q_lora_rank is None + else self.q_a_proj.weight.dtype + ) + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, + key_states, + value_states, + attention_mask, + q_len, + dropout=dropout_rate, + softmax_scale=self.softmax_scale, + ) + if self.q_head_dim != self.v_head_dim: + attn_output = attn_output[:, :, :, : self.v_head_dim] + + attn_output = attn_output.reshape( + bsz, q_len, self.num_heads * self.v_head_dim + ).contiguous() + attn_output = self.o_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + def _flash_attention_forward( + self, + query_states, + key_states, + value_states, + attention_mask, + query_length, + dropout=0.0, + softmax_scale=None, + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`int`, *optional*): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + ( + query_states, + key_states, + value_states, + indices_q, + cu_seq_lens, + max_seq_lens, + ) = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input( + attn_output_unpad, indices_q, batch_size, query_length + ) + else: + attn_output = flash_attn_func( + query_states, + key_states, + value_states, + dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + return attn_output + + def _upad_input( + self, query_layer, key_layer, value_layer, attention_mask, query_length + ): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), + indices_k, + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), + indices_k, + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( + query_layer, attention_mask + ) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +ATTENTION_CLASSES = { + "eager": DeepseekV3Attention, + "flash_attention_2": DeepseekV3FlashAttention2, +} + + +class DeepseekV3DecoderLayer(nn.Module): + def __init__(self, config: DeepseekV3Config, layer_idx: int): + super().__init__() + self.hidden_size = config.hidden_size + + self.self_attn = ATTENTION_CLASSES[config._attn_implementation]( + config=config, layer_idx=layer_idx + ) + + self.mlp = ( + DeepseekV3MoE(config) + if ( + config.n_routed_experts is not None + and layer_idx >= config.first_k_dense_replace + and layer_idx % config.moe_layer_freq == 0 + ) + else DeepseekV3MLP(config) + ) + self.input_layernorm = DeepseekV3RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + self.post_attention_layernorm = DeepseekV3RMSNorm( + config.hidden_size, eps=config.rms_norm_eps + ) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = False, + **kwargs, + ) -> Tuple[ + torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] + ]: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`, *optional*): + attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, + query_sequence_length, key_sequence_length)` if default attention is used. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states + """ + if "padding_mask" in kwargs: + warnings.warn( + "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" + ) + residual = hidden_states + + hidden_states = self.input_layernorm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + **kwargs, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights,) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +DeepseekV3_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`DeepseekV3Config`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", + DeepseekV3_START_DOCSTRING, +) +class DeepseekV3PreTrainedModel(PreTrainedModel): + config_class = DeepseekV3Config + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["DeepseekV3DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + _supports_cache_class = True + + def _init_weights(self, module): + std = self.config.initializer_range + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +DeepseekV3_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. + + [What are position IDs?](../glossary#position-ids) + past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): + Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` + returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. + + Two formats are allowed: + - a [`~cache_utils.Cache`] instance; + - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy + cache format. + + The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the + legacy cache format will be returned. + + If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't + have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` + of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", + DeepseekV3_START_DOCSTRING, +) +class DeepseekV3Model(DeepseekV3PreTrainedModel): + """ + Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`] + + Args: + config: DeepseekV3Config + """ + + def __init__(self, config: DeepseekV3Config): + super().__init__(config) + self.padding_idx = config.pad_token_id + self.vocab_size = config.vocab_size + + self.embed_tokens = nn.Embedding( + config.vocab_size, config.hidden_size, self.padding_idx + ) + self.layers = nn.ModuleList( + [ + DeepseekV3DecoderLayer(config, layer_idx) + for layer_idx in range(config.num_hidden_layers) + ] + ) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPast]: + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError( + "You cannot specify both input_ids and inputs_embeds at the same time" + ) + elif input_ids is not None: + batch_size, seq_length = input_ids.shape[:2] + elif inputs_embeds is not None: + batch_size, seq_length = inputs_embeds.shape[:2] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + past_key_values_length = 0 + if use_cache: + use_legacy_cache = not isinstance(past_key_values, Cache) + if use_legacy_cache: + past_key_values = DynamicCache.from_legacy_cache(past_key_values) + past_key_values_length = past_key_values.get_usable_length(seq_length) + + if position_ids is None: + device = input_ids.device if input_ids is not None else inputs_embeds.device + position_ids = torch.arange( + past_key_values_length, + seq_length + past_key_values_length, + dtype=torch.long, + device=device, + ) + position_ids = position_ids.unsqueeze(0) + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = ( + attention_mask + if (attention_mask is not None and 0 in attention_mask) + else None + ) + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, + (batch_size, seq_length), + inputs_embeds, + past_key_values_length, + ) + + # embed positions + hidden_states = inputs_embeds + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + next_decoder_cache = None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_value=past_key_values, + output_attentions=output_attentions, + use_cache=use_cache, + ) + + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache = layer_outputs[2 if output_attentions else 1] + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + hidden_states = self.norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = None + if use_cache: + next_cache = ( + next_decoder_cache.to_legacy_cache() + if use_legacy_cache + else next_decoder_cache + ) + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] + if v is not None + ) + return BaseModelOutputWithPast( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + ) + + +class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel, GenerationMixin): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + super().__init__(config) + self.model = DeepseekV3Model(config) + self.vocab_size = config.vocab_size + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.embed_tokens + + def set_input_embeddings(self, value): + self.model.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model = decoder + + def get_decoder(self): + return self.model + + @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) + @replace_return_docstrings( + output_type=CausalLMOutputWithPast, config_class="DeepseekV3Config" + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM + + >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) + >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) + + >>> prompt = "Hey, are you conscious? Can you talk to me?" + >>> inputs = tokenizer(prompt, return_tensors="pt") + + >>> # Generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." + ```""" + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + logits = logits.float() + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + inputs_embeds=None, + **kwargs, + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + max_cache_length = past_key_values.get_seq_length() + else: + cache_length = past_length = past_key_values[0][0].shape[2] + max_cache_length = None + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as + # input) + if ( + attention_mask is not None + and attention_mask.shape[1] > input_ids.shape[1] + ): + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + + # If we are about to go beyond the maximum cache length, we need to crop the input attention mask. + if ( + max_cache_length is not None + and attention_mask is not None + and cache_length + input_ids.shape[1] > max_cache_length + ): + attention_mask = attention_mask[:, -max_cache_length:] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + } + ) + return model_inputs + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple( + past_state.index_select(0, beam_idx.to(past_state.device)) + for past_state in layer_past + ), + ) + return reordered_past + + +class MoonVitVLProjector(nn.Module): + + def __init__( + self, + in_channels: int, + merge_kernel_size: list[int, int], + hidden_act: str = "gelu", + ln_eps: float = 1e-5, + out_dim: int = 4096, + ): + super().__init__() + self.hidden_size = in_channels * merge_kernel_size[0] * merge_kernel_size[1] + + self.pre_norm = nn.nn.LayerNorm(in_channels, eps=ln_eps) + self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True) + self.act = ACT2FN[hidden_act] + self.linear_2 = nn.Linear(self.hidden_size, out_dim, bias=True) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.pre_norm(hidden_states).view(-1, self.hidden_size) + hidden_states = self.linear_1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.linear_2(hidden_states) + return hidden_states + + +class MoonVitPretrainedModel(PreTrainedModel): + config_class = MoonViTConfig + model_type = "moonvit" + _no_split_modules = ["PackingTransformer"] + _supports_flash_attn_2 = True + _supports_sdpa = True + + def __init__(self, config: MoonViTConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + config = deepcopy(config) + self.merge_kernel_size = config.merge_kernel_size + self.patch_size = config.patch_size + self.patch_embed = MoonVisionPatchEmbed( + out_dim=config.hidden_size, + patch_size=config.patch_size, + pos_emb_height=config.init_pos_emb_height, + pos_emb_width=config.init_pos_emb_width, + ) + + self.encoder = MoonVitEncoder( + hidden_dim=config.hidden_size, + num_layers=config.num_hidden_layers, + block_cfg={ + "num_heads": config.num_attention_heads, + "hidden_dim": config.hidden_size, + "mlp_dim": config.intermediate_size, + "activation": PytorchGELUTanh(), + "attn_bias": True, + "attn_implementation": config._attn_implementation, + }, + ) + + def forward( + self, pixel_values: torch.Tensor, grid_hw: torch.Tensor + ) -> torch.Tensor: + """ + Args: + pixel_values (torch.Tensor): The input pixel values. + grid_hw (torch.Tensor): The grid height and width. + + Returns: + torch.Tensor: The output tokens. + """ + hidden_states = self.patch_embed(pixel_values, grid_hw) + hidden_states = self.encoder(hidden_states, grid_hw) + hidden_states = patch_merger( + hidden_states, grid_hw, merge_kernel_size=self.merge_kernel_size + ) + return hidden_states + + +class KimiVLMultiModalProjector(nn.Module): + + def __init__(self, config: KimiVLConfig): + super().__init__() + + self.hidden_size = ( + config.vision_config.hidden_size + * config.vision_config.merge_kernel_size[0] + * config.vision_config.merge_kernel_size[1] + ) + + self.pre_norm = torch.nn.LayerNorm(config.vision_config.hidden_size, eps=1e-05) + self.linear_1 = nn.Linear(self.hidden_size, self.hidden_size, bias=True) + self.act = GELUActivation() + self.linear_2 = nn.Linear( + self.hidden_size, config.text_config.hidden_size, bias=True + ) + + def forward(self, image_features: list[torch.Tensor]) -> torch.Tensor: + image_features = torch.cat(image_features, dim=0) + hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size) + hidden_states = self.linear_1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.linear_2(hidden_states) + + return hidden_states + + +class KimiVLPreTrainedModel(PreTrainedModel, GenerationMixin): + config_class = KimiVLConfig + base_model_prefix = "model" + _no_split_modules = ["MoonVitEncoderLayer", "DeepseekV3DecoderLayer"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + + def _init_weights(self, module): + # important: this ported version of Llava isn't meant for training from scratch - only + # inference and fine-tuning - so the proper init weights code has been removed - the original codebase + # https://github.com/haotian-liu/LLaVA/tree/main/llava should serve for that purpose + std = ( + self.config.initializer_range + if hasattr(self.config, "initializer_range") + else self.config.text_config.initializer_range + ) + + if hasattr(module, "class_embedding"): + module.class_embedding.data.normal_(mean=0.0, std=std) + + if isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def _supports_sdpa(self): + """ + Retrieve language_model's attribute to check whether the model supports + SDPA or not. + """ + return self.language_model._supports_sdpa + + +class KimiVLForConditionalGeneration(KimiVLPreTrainedModel, GenerationMixin): + + def __init__(self, config: KimiVLConfig): + super().__init__(config) + vision_config: MoonViTConfig = config.vision_config + self.vision_tower = MoonVitPretrainedModel(vision_config) + self.multi_modal_projector = KimiVLMultiModalProjector(config) + self.language_model = DeepseekV3ForCausalLM(config.text_config) + self.post_init() + + def get_input_embeddings(self): + return self.language_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.language_model.set_input_embeddings(value) + + def get_output_embeddings(self): + return self.language_model.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + self.language_model.set_output_embeddings(new_embeddings) + + def set_decoder(self, decoder): + self.language_model.set_decoder(decoder) + + def get_decoder(self): + return self.language_model.get_decoder() + + def tie_weights(self): + return self.language_model.tie_weights() + + def resize_token_embeddings( + self, new_num_tokens: int | None = None, pad_to_multiple_of=None + ) -> nn.Embedding: + model_embeds = self.language_model.resize_token_embeddings( + new_num_tokens, pad_to_multiple_of + ) + # update vocab size + self.config.text_config.vocab_size = model_embeds.num_embeddings + self.vocab_size = model_embeds.num_embeddings + return model_embeds + + def _merge_with_image_features( + self, + inputs_embeds: torch.Tensor, + input_ids: torch.Tensor, + image_features: torch.Tensor, + ): + """ + Args: + inputs_embeds (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length, input_embed_dim)`): + The input embeddings. + input_ids (:obj:`torch.Tensor` of shape :obj:`(batch_size, sequence_length)`): + The input ids. + image_features (:obj:`torch.Tensor` of shape :obj:`(image_token_nums, image_feature_dim)`): + The image features to merge with the input embeddings. + """ + image_token_index: int = self.config.media_placeholder_token_id + + batch_size, sequence_length, input_embed_dim = inputs_embeds.shape + image_feature_nums, image_feature_dim = image_features.shape + + assert image_feature_dim == input_embed_dim + + image_token_nums = (input_ids == image_token_index).sum().item() + assert image_feature_nums == image_token_nums + + # (batch_size, sequence_length, input_embed_dim) -> (batch_size * sequence_length, input_embed_dim) + inputs_embeds = inputs_embeds.reshape(-1, input_embed_dim) + + # (batch_size, sequence_length) -> (batch_size * sequence_length) + input_ids = input_ids.flatten() + + inputs_embeds[input_ids == image_token_index] = image_features + + inputs_embeds = inputs_embeds.reshape( + (batch_size, sequence_length, input_embed_dim) + ) + + return inputs_embeds + + def _extract_image_features( + self, pixel_values: torch.FloatTensor, image_grid_hws: torch.LongTensor + ): + """ + Args: + pixel_values (:obj:`torch.FloatTensor` of shape :obj:`(image_token_nums, 3, patch_size, patch_size)`): + The pixel values of the images processed by image processor. + + Returns: + image_features (:obj:`torch.FloatTensor` of shape :obj:`(image_token_nums, image_feature_dim)`): + The selected image features to use as input to the projector head. + """ + # [(image_token_nums_0, image_feature_dim), (image_token_nums_1, image_feature_dim), ...] + image_features: list[torch.Tensor] = self.vision_tower( + pixel_values, image_grid_hws + ) + # (image_token_nums_0 + image_token_nums_1 + ..., image_feature_dim) + image_features: torch.Tensor = self.multi_modal_projector(image_features) + return image_features + + def forward( + self, + input_ids: torch.LongTensor | None = None, + attention_mask: torch.Tensor | None = None, + position_ids: torch.LongTensor | None = None, + past_key_values: list[torch.FloatTensor] | None = None, + inputs_embeds: torch.FloatTensor | None = None, + labels: torch.LongTensor | None = None, + use_cache: bool | None = None, + output_attentions: bool | None = None, + output_hidden_states: bool | None = None, + return_dict: bool | None = None, + pixel_values: torch.FloatTensor | list[torch.FloatTensor] | None = None, + image_grid_hws: Optional[torch.LongTensor] = None, + ) -> Union[tuple, LlavaCausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Example: + ```python + >>> from PIL import Image + + >>> # generate + >>> generate_ids = model.generate(inputs.input_ids, max_length=30) + >>> # decode + >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + ```""" + + output_attentions = ( + output_attentions + if output_attentions is not None + else self.config.output_attentions + ) + output_hidden_states = ( + output_hidden_states + if output_hidden_states is not None + else self.config.output_hidden_states + ) + return_dict = ( + return_dict if return_dict is not None else self.config.use_return_dict + ) + + if inputs_embeds is None: + inputs_embeds = self.get_input_embeddings()(input_ids) + + if pixel_values is not None and pixel_values.size(0) > 0: + pixel_values = pixel_values.to(self.vision_tower.dtype) + + image_features: torch.Tensor = self._extract_image_features( + pixel_values, image_grid_hws + ) + inputs_embeds = inputs_embeds.to(image_features[0].dtype) + inputs_embeds = self._merge_with_image_features( + inputs_embeds, input_ids, image_features + ) + + outputs = self.language_model( + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = outputs[0] + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + if attention_mask is not None: + shift_attention_mask = attention_mask[..., 1:] + shift_logits = logits[..., :-1, :][ + shift_attention_mask.to(logits.device) != 0 + ].contiguous() + shift_labels = labels[..., 1:][ + shift_attention_mask.to(labels.device) != 0 + ].contiguous() + else: + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = nn.CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(-1, shift_logits.size(-1)), + shift_labels.view(-1).to(shift_logits.device), + ) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return LlavaCausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + inputs_embeds=None, + pixel_values=None, + attention_mask=None, + image_grid_hws=None, + cache_position=None, + **kwargs, + ): + model_inputs = self.language_model.prepare_inputs_for_generation( + input_ids=input_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + attention_mask=attention_mask, + cache_position=cache_position, + **kwargs, + ) + + # If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore + # Otherwise we need pixel values to be passed to model + if cache_position[0] == 0: + model_inputs["pixel_values"] = pixel_values + model_inputs["image_grid_hws"] = image_grid_hws + + return model_inputs