import torch import torch.nn as nn import math import torch import torch.nn as nn import math class PositionalEncoding(nn.Module): def __init__(self, d_model, max_len=5000): super().__init__() pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len).unsqueeze(1).float() div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) def forward(self, x): return x + self.pe[:, :x.size(1)] class MultiHeadSelfAttention(nn.Module): def __init__(self, embed_dim, num_heads): super().__init__() self.attn = nn.MultiheadAttention(embed_dim, num_heads, batch_first=True) def forward(self, x): attn_output, _ = self.attn(x, x, x) return attn_output class FeedForward(nn.Module): def __init__(self, embed_dim, ff_dim): super().__init__() self.ff = nn.Sequential( nn.Linear(embed_dim, ff_dim), nn.ReLU(), nn.Linear(ff_dim, embed_dim) ) def forward(self, x): return self.ff(x) # --- NEW: Adapter Block --- class Adapter(nn.Module): def __init__(self, dim, bottleneck=32): super().__init__() self.down = nn.Linear(dim, bottleneck) self.relu = nn.ReLU() self.up = nn.Linear(bottleneck, dim) def forward(self, x): return x + self.up(self.relu(self.down(x))) # Residual class TransformerBlock(nn.Module): def __init__(self, embed_dim, num_heads, ff_dim, long_term_adapter_dim=None, session_adapter_dim=None): super().__init__() self.attn = MultiHeadSelfAttention(embed_dim, num_heads) self.norm1 = nn.LayerNorm(embed_dim) self.ff = FeedForward(embed_dim, ff_dim) self.norm2 = nn.LayerNorm(embed_dim) # Two adapters: one for long-term (rarely updated), one for session (online) self.long_term_adapter = Adapter(embed_dim, long_term_adapter_dim) if long_term_adapter_dim else None self.session_adapter = Adapter(embed_dim, session_adapter_dim) if session_adapter_dim else None def forward(self, x): x = self.norm1(x + self.attn(x)) x = self.norm2(x + self.ff(x)) # Add both adapters’ outputs, if present if self.long_term_adapter is not None: x = self.long_term_adapter(x) if self.session_adapter is not None: x = self.session_adapter(x) return x class Microformer(nn.Module): def __init__(self, vocab_size, embed_dim, num_heads, ff_dim, num_layers, max_seq_len, long_term_adapter_dim=None, session_adapter_dim=None): super().__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) self.positional_encoding = PositionalEncoding(embed_dim, max_seq_len) self.layers = nn.ModuleList([ TransformerBlock( embed_dim, num_heads, ff_dim, long_term_adapter_dim=long_term_adapter_dim, session_adapter_dim=session_adapter_dim ) for _ in range(num_layers) ]) self.output = nn.Linear(embed_dim, vocab_size) def forward(self, x): x = self.embedding(x) x = self.positional_encoding(x) for layer in self.layers: x = layer(x) return self.output(x) def freeze_except_adapters(self, session_only=True, include_output=True): for param in self.parameters(): param.requires_grad = False for layer in self.layers: if getattr(layer, 'session_adapter', None) is not None: for param in layer.session_adapter.parameters(): param.requires_grad = True if not session_only and getattr(layer, 'long_term_adapter', None) is not None: for param in layer.long_term_adapter.parameters(): param.requires_grad = True if include_output: for param in self.output.parameters(): param.requires_grad = True