Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,118 +1,35 @@
|
|
1 |
---
|
2 |
-
library_name: transformers
|
3 |
-
license: apache-2.0
|
4 |
base_model: openai/whisper-small
|
5 |
-
tags:
|
6 |
-
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- common_voice_17_0
|
9 |
-
|
10 |
-
|
|
|
11 |
model-index:
|
12 |
-
- name: whisper-small
|
13 |
results:
|
14 |
- task:
|
15 |
-
name: Automatic Speech Recognition
|
16 |
type: automatic-speech-recognition
|
|
|
17 |
dataset:
|
18 |
-
name:
|
19 |
-
type:
|
20 |
-
config: fr
|
21 |
-
split: test
|
22 |
-
args: fr
|
23 |
metrics:
|
24 |
-
-
|
25 |
-
|
26 |
-
value: 23.51069802258125
|
27 |
---
|
28 |
|
29 |
-
|
30 |
-
should probably proofread and complete it, then remove this comment. -->
|
31 |
-
|
32 |
-
# whisper-small-fr
|
33 |
-
|
34 |
-
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.
|
35 |
-
It achieves the following results on the evaluation set:
|
36 |
-
- Loss: 0.4490
|
37 |
-
- Model Preparation Time: 0.0042
|
38 |
-
- Wer: 23.5107
|
39 |
-
|
40 |
-
## Model description
|
41 |
-
|
42 |
-
More information needed
|
43 |
-
|
44 |
-
## Intended uses & limitations
|
45 |
-
|
46 |
-
More information needed
|
47 |
-
|
48 |
-
## Training and evaluation data
|
49 |
-
|
50 |
-
More information needed
|
51 |
-
|
52 |
-
## Training procedure
|
53 |
-
|
54 |
-
### Training hyperparameters
|
55 |
-
|
56 |
-
The following hyperparameters were used during training:
|
57 |
-
- learning_rate: 1e-05
|
58 |
-
- train_batch_size: 258
|
59 |
-
- eval_batch_size: 64
|
60 |
-
- seed: 42
|
61 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
62 |
-
- lr_scheduler_type: linear
|
63 |
-
- lr_scheduler_warmup_steps: 50
|
64 |
-
- training_steps: 2000
|
65 |
-
- mixed_precision_training: Native AMP
|
66 |
-
|
67 |
-
### Training results
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
| 0.6515 | 0.6410 | 50 | 0.4803 | 0.0042 | 25.5359 |
|
72 |
-
| 0.3297 | 1.2821 | 100 | 0.4457 | 0.0042 | 23.9349 |
|
73 |
-
| 0.2733 | 1.9231 | 150 | 0.4333 | 0.0042 | 23.5294 |
|
74 |
-
| 0.2003 | 2.5641 | 200 | 0.4395 | 0.0042 | 23.5419 |
|
75 |
-
| 0.1763 | 3.2051 | 250 | 0.4479 | 0.0042 | 23.7748 |
|
76 |
-
| 0.1354 | 3.8462 | 300 | 0.4490 | 0.0042 | 23.5107 |
|
77 |
-
| 0.105 | 4.4872 | 350 | 0.4650 | 0.0042 | 23.8871 |
|
78 |
-
| 0.089 | 5.1282 | 400 | 0.4833 | 0.0042 | 24.1844 |
|
79 |
-
| 0.0629 | 5.7692 | 450 | 0.4929 | 0.0042 | 24.3882 |
|
80 |
-
| 0.0499 | 6.4103 | 500 | 0.5136 | 0.0042 | 24.6647 |
|
81 |
-
| 0.0406 | 7.0513 | 550 | 0.5226 | 0.0042 | 24.5878 |
|
82 |
-
| 0.0276 | 7.6923 | 600 | 0.5368 | 0.0042 | 25.3197 |
|
83 |
-
| 0.0238 | 8.3333 | 650 | 0.5504 | 0.0042 | 24.6003 |
|
84 |
-
| 0.0193 | 8.9744 | 700 | 0.5593 | 0.0042 | 25.0140 |
|
85 |
-
| 0.0146 | 9.6154 | 750 | 0.5718 | 0.0042 | 25.0203 |
|
86 |
-
| 0.0133 | 10.2564 | 800 | 0.5816 | 0.0042 | 25.0556 |
|
87 |
-
| 0.0115 | 10.8974 | 850 | 0.5867 | 0.0042 | 24.9849 |
|
88 |
-
| 0.0099 | 11.5385 | 900 | 0.5946 | 0.0042 | 25.0120 |
|
89 |
-
| 0.0091 | 12.1795 | 950 | 0.6006 | 0.0042 | 24.9787 |
|
90 |
-
| 0.0081 | 12.8205 | 1000 | 0.6056 | 0.0042 | 25.1471 |
|
91 |
-
| 0.0075 | 13.4615 | 1050 | 0.6114 | 0.0042 | 25.0972 |
|
92 |
-
| 0.0072 | 14.1026 | 1100 | 0.6166 | 0.0042 | 25.0993 |
|
93 |
-
| 0.0065 | 14.7436 | 1150 | 0.6198 | 0.0042 | 25.1430 |
|
94 |
-
| 0.0062 | 15.3846 | 1200 | 0.6249 | 0.0042 | 25.2968 |
|
95 |
-
| 0.006 | 16.0256 | 1250 | 0.6270 | 0.0042 | 25.1637 |
|
96 |
-
| 0.0055 | 16.6667 | 1300 | 0.6311 | 0.0042 | 25.1741 |
|
97 |
-
| 0.0053 | 17.3077 | 1350 | 0.6344 | 0.0042 | 25.2428 |
|
98 |
-
| 0.0051 | 17.9487 | 1400 | 0.6371 | 0.0042 | 25.2677 |
|
99 |
-
| 0.0048 | 18.5897 | 1450 | 0.6397 | 0.0042 | 25.3072 |
|
100 |
-
| 0.0048 | 19.2308 | 1500 | 0.6418 | 0.0042 | 25.2532 |
|
101 |
-
| 0.0046 | 19.8718 | 1550 | 0.6443 | 0.0042 | 25.3093 |
|
102 |
-
| 0.0044 | 20.5128 | 1600 | 0.6460 | 0.0042 | 25.2344 |
|
103 |
-
| 0.0043 | 21.1538 | 1650 | 0.6479 | 0.0042 | 25.2739 |
|
104 |
-
| 0.0042 | 21.7949 | 1700 | 0.6493 | 0.0042 | 25.2802 |
|
105 |
-
| 0.0042 | 22.4359 | 1750 | 0.6506 | 0.0042 | 25.3155 |
|
106 |
-
| 0.0041 | 23.0769 | 1800 | 0.6519 | 0.0042 | 25.2864 |
|
107 |
-
| 0.004 | 23.7179 | 1850 | 0.6528 | 0.0042 | 25.2719 |
|
108 |
-
| 0.004 | 24.3590 | 1900 | 0.6531 | 0.0042 | 25.2677 |
|
109 |
-
| 0.0039 | 25.0 | 1950 | 0.6538 | 0.0042 | 25.2781 |
|
110 |
-
| 0.0039 | 25.6410 | 2000 | 0.6540 | 0.0042 | 25.2802 |
|
111 |
|
|
|
112 |
|
113 |
-
###
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
-
|
117 |
-
-
|
118 |
-
- Tokenizers 0.21.0
|
|
|
1 |
---
|
|
|
|
|
2 |
base_model: openai/whisper-small
|
|
|
|
|
3 |
datasets:
|
4 |
+
- mozilla-foundation/common_voice_17_0
|
5 |
+
language: fr
|
6 |
+
library_name: transformers
|
7 |
+
license: apache-2.0
|
8 |
model-index:
|
9 |
+
- name: Finetuned openai/whisper-small on French
|
10 |
results:
|
11 |
- task:
|
|
|
12 |
type: automatic-speech-recognition
|
13 |
+
name: Speech-to-Text
|
14 |
dataset:
|
15 |
+
name: Common Voice (French)
|
16 |
+
type: common_voice
|
|
|
|
|
|
|
17 |
metrics:
|
18 |
+
- type: wer
|
19 |
+
value: 23.511
|
|
|
20 |
---
|
21 |
|
22 |
+
# Finetuned openai/whisper-small on 20000 French training audio samples from mozilla-foundation/common_voice_17_0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
This model was created from the Mozilla.ai Blueprint:
|
25 |
+
[speech-to-text-finetune](https://github.com/mozilla-ai/speech-to-text-finetune).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
## Evaluation results on 5000 audio samples of French:
|
28 |
|
29 |
+
### Baseline model (before finetuning) on French
|
30 |
+
- Word Error Rate: 30.304
|
31 |
+
- Loss: 1.155
|
32 |
|
33 |
+
### Finetuned model (after finetuning) on French
|
34 |
+
- Word Error Rate: 23.511
|
35 |
+
- Loss: 0.449
|
|