update model card README.md
Browse files
README.md
CHANGED
|
@@ -20,16 +20,16 @@ model-index:
|
|
| 20 |
metrics:
|
| 21 |
- name: Precision
|
| 22 |
type: precision
|
| 23 |
-
value: 0.
|
| 24 |
- name: Recall
|
| 25 |
type: recall
|
| 26 |
-
value: 0.
|
| 27 |
- name: F1
|
| 28 |
type: f1
|
| 29 |
-
value: 0.
|
| 30 |
- name: Accuracy
|
| 31 |
type: accuracy
|
| 32 |
-
value: 0.
|
| 33 |
---
|
| 34 |
|
| 35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
@@ -39,11 +39,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 39 |
|
| 40 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
| 41 |
It achieves the following results on the evaluation set:
|
| 42 |
-
- Loss: 0.
|
| 43 |
-
- Precision: 0.
|
| 44 |
-
- Recall: 0.
|
| 45 |
-
- F1: 0.
|
| 46 |
-
- Accuracy: 0.
|
| 47 |
|
| 48 |
## Model description
|
| 49 |
|
|
@@ -63,33 +63,27 @@ More information needed
|
|
| 63 |
|
| 64 |
The following hyperparameters were used during training:
|
| 65 |
- learning_rate: 1e-05
|
| 66 |
-
- train_batch_size:
|
| 67 |
- eval_batch_size: 16
|
| 68 |
- seed: 42
|
| 69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 70 |
- lr_scheduler_type: linear
|
| 71 |
-
- training_steps:
|
| 72 |
|
| 73 |
### Training results
|
| 74 |
|
| 75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 77 |
-
| No log |
|
| 78 |
-
| No log |
|
| 79 |
-
| No log |
|
| 80 |
-
| No log |
|
| 81 |
-
|
|
| 82 |
-
|
|
| 83 |
-
|
|
| 84 |
-
|
|
| 85 |
-
|
|
| 86 |
-
|
|
| 87 |
-
| No log | 11.0 | 275 | 0.6476 | 0.8388 | 0.8895 | 0.8634 | 0.8299 |
|
| 88 |
-
| No log | 12.0 | 300 | 0.6359 | 0.8584 | 0.8945 | 0.8761 | 0.8382 |
|
| 89 |
-
| No log | 13.0 | 325 | 0.6469 | 0.8759 | 0.907 | 0.8912 | 0.8395 |
|
| 90 |
-
| No log | 14.0 | 350 | 0.6510 | 0.8729 | 0.9035 | 0.8880 | 0.8373 |
|
| 91 |
-
| No log | 15.0 | 375 | 0.6555 | 0.8656 | 0.902 | 0.8834 | 0.8354 |
|
| 92 |
-
| No log | 16.0 | 400 | 0.6541 | 0.8747 | 0.904 | 0.8891 | 0.8368 |
|
| 93 |
|
| 94 |
|
| 95 |
### Framework versions
|
|
|
|
| 20 |
metrics:
|
| 21 |
- name: Precision
|
| 22 |
type: precision
|
| 23 |
+
value: 0.9059871350816427
|
| 24 |
- name: Recall
|
| 25 |
type: recall
|
| 26 |
+
value: 0.9155
|
| 27 |
- name: F1
|
| 28 |
type: f1
|
| 29 |
+
value: 0.9107187266849044
|
| 30 |
- name: Accuracy
|
| 31 |
type: accuracy
|
| 32 |
+
value: 0.8407211759301791
|
| 33 |
---
|
| 34 |
|
| 35 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
|
| 39 |
|
| 40 |
This model is a fine-tuned version of [layoutlmv3](https://huggingface.co/layoutlmv3) on the mp-02/funsd dataset.
|
| 41 |
It achieves the following results on the evaluation set:
|
| 42 |
+
- Loss: 0.8860
|
| 43 |
+
- Precision: 0.9060
|
| 44 |
+
- Recall: 0.9155
|
| 45 |
+
- F1: 0.9107
|
| 46 |
+
- Accuracy: 0.8407
|
| 47 |
|
| 48 |
## Model description
|
| 49 |
|
|
|
|
| 63 |
|
| 64 |
The following hyperparameters were used during training:
|
| 65 |
- learning_rate: 1e-05
|
| 66 |
+
- train_batch_size: 4
|
| 67 |
- eval_batch_size: 16
|
| 68 |
- seed: 42
|
| 69 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 70 |
- lr_scheduler_type: linear
|
| 71 |
+
- training_steps: 1000
|
| 72 |
|
| 73 |
### Training results
|
| 74 |
|
| 75 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
| 76 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
| 77 |
+
| No log | 2.63 | 100 | 0.6111 | 0.7963 | 0.864 | 0.8288 | 0.7987 |
|
| 78 |
+
| No log | 5.26 | 200 | 0.5861 | 0.8507 | 0.883 | 0.8665 | 0.8266 |
|
| 79 |
+
| No log | 7.89 | 300 | 0.5856 | 0.8654 | 0.9005 | 0.8826 | 0.8426 |
|
| 80 |
+
| No log | 10.53 | 400 | 0.6502 | 0.8801 | 0.8995 | 0.8897 | 0.8427 |
|
| 81 |
+
| 0.4088 | 13.16 | 500 | 0.7679 | 0.8880 | 0.904 | 0.8959 | 0.8373 |
|
| 82 |
+
| 0.4088 | 15.79 | 600 | 0.8371 | 0.8820 | 0.904 | 0.8928 | 0.8333 |
|
| 83 |
+
| 0.4088 | 18.42 | 700 | 0.8320 | 0.8931 | 0.9145 | 0.9037 | 0.8336 |
|
| 84 |
+
| 0.4088 | 21.05 | 800 | 0.8494 | 0.8969 | 0.9135 | 0.9051 | 0.8341 |
|
| 85 |
+
| 0.4088 | 23.68 | 900 | 0.8700 | 0.9005 | 0.914 | 0.9072 | 0.8385 |
|
| 86 |
+
| 0.061 | 26.32 | 1000 | 0.8860 | 0.9060 | 0.9155 | 0.9107 | 0.8407 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
|
| 89 |
### Framework versions
|