--- base_model: Novaciano/BAHAMUTH-PURGED-3.2-1B datasets: - HuggingFaceTB/smoltalk - Guilherme34/uncensor - teknium/OpenHermes-2.5 - passing2961/multifaceted-skill-of-mind - PawanKrd/math-gpt-4o-200k - V3N0M/Jenna-50K-Alpaca-Uncensored - cognitivecomputations/dolphin-coder - mlabonne/FineTome-100k - microsoft/orca-math-word-problems-200k - CarrotAI/ko-instruction-dataset - Salesforce/xlam-function-calling-60k - anthracite-org/kalo-opus-instruct-22k-no-refusal - anthracite-org/stheno-filtered-v1.1 - anthracite-org/nopm_claude_writing_fixed - AiAF/SCPWiki-Archive-02-March-2025-Datasets - huihui-ai/QWQ-LONGCOT-500K - huihui-ai/LONGCOT-Refine-500K - Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned - Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned - alexandreteles/AlpacaToxicQA_ShareGPT - Nitral-AI/Active_RP-ShareGPT - PJMixers/hieunguyenminh_roleplay-deduped-ShareGPT - Nitral-AI/RP_Alignment-ShareGPT - Chaser-cz/sonnet35-charcard-roleplay-sharegpt - AiCloser/sharegpt_cot_dataset - PJMixers/Gryphe_Opus-WritingPrompts-Story2Prompt-ShareGPT - priveeai/pippa_sharegpt - Locutusque/sharegpt_gpt4_uncensored_cleaned - OpenCoder-LLM/opc-sft-stage1 - OpenCoder-LLM/opc-sft-stage2 - microsoft/orca-agentinstruct-1M-v1 - NousResearch/hermes-function-calling-v1 - AI-MO/NuminaMath-CoT - AI-MO/NuminaMath-TIR - allenai/tulu-3-sft-mixture - cognitivecomputations/samantha-data - m-a-p/CodeFeedback-Filtered-Instruction - m-a-p/Code-Feedback - FreedomIntelligence/medical-o1-reasoning-SFT language: - es - en library_name: transformers license: mit quantized_by: mradermacher tags: - mergekit - merge - llama - llama3.2 - rp - roleplay - nsfw - 1b - not-for-all-audiences --- ## About static quants of https://huggingface.co/Novaciano/BAHAMUTH-PURGED-3.2-1B weighted/imatrix quants are available at https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q3_K_L.gguf) | Q3_K_L | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q6_K.gguf) | Q6_K | 1.3 | very good quality | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/BAHAMUTH-PURGED-3.2-1B-GGUF/resolve/main/BAHAMUTH-PURGED-3.2-1B.f16.gguf) | f16 | 3.1 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.