--- base_model: Delta-Vector/Hamanasu-QwQ-V1.5-Instruct datasets: - NewEden/Orion-LIT - NewEden/Orion-Asstr-Stories-16K - Mielikki/Erebus-87k - NewEden/Hydrus-R1-Thinking-Sharegpt - PocketDoc/Dans-MemoryCore-CoreCurriculum-Small - Nitral-AI/ARES-ShareGPT - NewEden/Hydrus-HelpSteer2 - PocketDoc/Dans-Codemaxx-CodeFeedback-Conversations - PocketDoc/Dans-Toolmaxx-Agent - PocketDoc/Dans-Assistantmaxx-Tulu3-IF - NewEden/Hydrus-SonnetOrca - NewEden/Hydrus-Chat_error-Pure-Dove-sharegpt - NewEden/No_Robots-R1-Filtered - NewEden/GSM8K-R1-filtered - NewEden/Hydrus_Anthropic_hh_harmful-sharegpt - NewEden/Hydrus-Instruct-SmolTalk - PocketDoc/Dans-Logicmaxx-Skunkworks - PocketDoc/Dans-Logicmaxx-SAT-AP - PocketDoc/Dans-Toolmaxx-ShellCommands - PocketDoc/Dans-Taskmaxx-Edit language: - en library_name: transformers quantized_by: mradermacher tags: - qwen - roleplay - finetune - storywriting --- ## About static quants of https://huggingface.co/Delta-Vector/Hamanasu-QwQ-V1.5-Instruct weighted/imatrix quants are available at https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q2_K.gguf) | Q2_K | 12.4 | | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q3_K_S.gguf) | Q3_K_S | 14.5 | | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q3_K_M.gguf) | Q3_K_M | 16.0 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q3_K_L.gguf) | Q3_K_L | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.IQ4_XS.gguf) | IQ4_XS | 18.0 | | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q4_K_S.gguf) | Q4_K_S | 18.9 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q4_K_M.gguf) | Q4_K_M | 20.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q5_K_S.gguf) | Q5_K_S | 22.7 | | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q5_K_M.gguf) | Q5_K_M | 23.4 | | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q6_K.gguf) | Q6_K | 27.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Hamanasu-QwQ-V1.5-Instruct-GGUF/resolve/main/Hamanasu-QwQ-V1.5-Instruct.Q8_0.gguf) | Q8_0 | 34.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.