mradermacher commited on
Commit
061a701
·
verified ·
1 Parent(s): 740f7e4

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -0
README.md CHANGED
@@ -1,6 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/OpenGVLab/InternVL3-78B-Pretrained
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: OpenGVLab/InternVL3-78B-Pretrained
3
+ language:
4
+ - multilingual
5
+ library_name: transformers
6
+ license: other
7
+ license_link: https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE
8
+ license_name: qwen
9
+ quantized_by: mradermacher
10
+ tags:
11
+ - internvl
12
+ - custom_code
13
+ ---
14
+ ## About
15
+
16
  <!-- ### quantize_version: 2 -->
17
  <!-- ### output_tensor_quantised: 1 -->
18
  <!-- ### convert_type: hf -->
19
  <!-- ### vocab_type: -->
20
  <!-- ### tags: nicoboss -->
21
  weighted/imatrix quants of https://huggingface.co/OpenGVLab/InternVL3-78B-Pretrained
22
+
23
+ <!-- provided-files -->
24
+ static quants are available at https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-GGUF
25
+ ## Usage
26
+
27
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
28
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
29
+ more details, including on how to concatenate multi-part files.
30
+
31
+ ## Provided Quants
32
+
33
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
34
+
35
+ | Link | Type | Size/GB | Notes |
36
+ |:-----|:-----|--------:|:------|
37
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ1_M.gguf) | i1-IQ1_M | 23.8 | mostly desperate |
38
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 25.6 | |
39
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ2_XS.gguf) | i1-IQ2_XS | 27.2 | |
40
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ2_S.gguf) | i1-IQ2_S | 28.0 | |
41
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ2_M.gguf) | i1-IQ2_M | 29.4 | |
42
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q2_K_S.gguf) | i1-Q2_K_S | 29.7 | very low quality |
43
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q2_K.gguf) | i1-Q2_K | 29.9 | IQ3_XXS probably better |
44
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 31.9 | lower quality |
45
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q3_K_S.gguf) | i1-Q3_K_S | 34.6 | IQ3_XS probably better |
46
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ3_M.gguf) | i1-IQ3_M | 35.6 | |
47
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q3_K_M.gguf) | i1-Q3_K_M | 37.8 | IQ3_S probably better |
48
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q3_K_L.gguf) | i1-Q3_K_L | 39.6 | IQ3_M probably better |
49
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-IQ4_XS.gguf) | i1-IQ4_XS | 39.8 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q4_K_S.gguf) | i1-Q4_K_S | 44.0 | optimal size/speed/quality |
51
+ | [GGUF](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q4_K_M.gguf) | i1-Q4_K_M | 47.5 | fast, recommended |
52
+ | [PART 1](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q5_K_S.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q5_K_S.gguf.part2of2) | i1-Q5_K_S | 51.5 | |
53
+ | [PART 1](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/InternVL3-78B-Pretrained-i1-GGUF/resolve/main/InternVL3-78B-Pretrained.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 64.4 | practically like static Q6_K |
54
+
55
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
56
+ types (lower is better):
57
+
58
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
59
+
60
+ And here are Artefact2's thoughts on the matter:
61
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
62
+
63
+ ## FAQ / Model Request
64
+
65
+ See https://huggingface.co/mradermacher/model_requests for some answers to
66
+ questions you might have and/or if you want some other model quantized.
67
+
68
+ ## Thanks
69
+
70
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
71
+ me use its servers and providing upgrades to my workstation to enable
72
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
73
+
74
+ <!-- end -->