File size: 2,712 Bytes
730b969
3e55c42
730b969
 
 
 
 
564dbf4
730b969
 
 
 
 
 
564dbf4
730b969
 
 
3e55c42
730b969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b69266
3e55c42
730b969
 
 
 
564dbf4
 
3e55c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730b969
 
 
 
3e55c42
 
 
730b969
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: apache-2.0
base_model: microsoft/conditional-detr-resnet-50
tags:
- generated_from_trainer
model-index:
- name: detr_finetuned_trashify_box_detector
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# detr_finetuned_trashify_box_detector

This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0728

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 25
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.6374        | 1.0   | 25   | 2.2767          |
| 2.3806        | 2.0   | 50   | 2.0779          |
| 2.17          | 3.0   | 75   | 1.8047          |
| 1.9959        | 4.0   | 100  | 1.7031          |
| 1.9129        | 5.0   | 125  | 1.6561          |
| 1.7917        | 6.0   | 150  | 1.5245          |
| 1.6619        | 7.0   | 175  | 1.4002          |
| 1.5913        | 8.0   | 200  | 1.3501          |
| 1.4466        | 9.0   | 225  | 1.2675          |
| 1.3785        | 10.0  | 250  | 1.2594          |
| 1.3542        | 11.0  | 275  | 1.2620          |
| 1.349         | 12.0  | 300  | 1.1957          |
| 1.3055        | 13.0  | 325  | 1.1818          |
| 1.1731        | 14.0  | 350  | 1.1466          |
| 1.1585        | 15.0  | 375  | 1.1627          |
| 1.0614        | 16.0  | 400  | 1.1615          |
| 1.0144        | 17.0  | 425  | 1.1411          |
| 0.967         | 18.0  | 450  | 1.1193          |
| 0.9114        | 19.0  | 475  | 1.1043          |
| 0.9031        | 20.0  | 500  | 1.1005          |
| 0.8719        | 21.0  | 525  | 1.1000          |
| 0.8505        | 22.0  | 550  | 1.0800          |
| 0.8314        | 23.0  | 575  | 1.0739          |
| 0.8178        | 24.0  | 600  | 1.0757          |
| 0.804         | 25.0  | 625  | 1.0728          |


### Framework versions

- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu124
- Datasets 2.21.0
- Tokenizers 0.19.1