from transformers import AutoModelForCausalLM | |
import torch | |
from safetensors.torch import save_file | |
model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-128k-instruct", trust_remote_code=True) | |
params = model.state_dict() | |
params2 = {} | |
for r in params.keys(): | |
if "gate_up_proj" in r: | |
(gate, up) = params[r].chunk(2) | |
params2[r.replace("gate_up_proj", "gate_proj")] = gate | |
params2[r.replace("gate_up_proj", "up_proj")] = up | |
elif "qkv_proj" in r: | |
(q, k, v) = params[r].chunk(3) | |
params2[r.replace("qkv_proj", "q_proj")] = q | |
params2[r.replace("qkv_proj", "k_proj")] = k | |
params2[r.replace("qkv_proj", "v_proj")] = v | |
else: | |
params2[r] = params[r] | |
for r in params2.keys(): | |
params2[r] = torch.tensor(params2[r].clone().detach(), dtype=torch.bfloat16) | |
save_file(params2, "model-00001-of-00001.safetensors", metadata={"format": "pt"}) | |