File size: 1,219 Bytes
e76efbc
 
 
6d366b4
 
 
 
 
 
e76efbc
 
bd81b92
 
6d366b4
e76efbc
6d366b4
e76efbc
6d366b4
e76efbc
 
 
6d366b4
e76efbc
6d366b4
e76efbc
 
 
6d366b4
e76efbc
6d366b4
 
 
e76efbc
6d366b4
 
 
e76efbc
6d366b4
e76efbc
bd81b92
 
6d366b4
 
e76efbc
6d366b4
e76efbc
6d366b4
e76efbc
 
 
6d366b4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
base_model: microsoft/phi-4
library_name: peft
license: apache-2.0
datasets:
- vicgalle/alpaca-gpt4
language:
- en
pipeline_tag: text-generation
---

# ⚠️ **Work in progress!**

# Model Card for FlowerTune-phi-4-NLP-PEFT

This PEFT adapter has been trained by using [Flower](https://flower.ai/), a friendly federated AI framework.

The adapter and benchmark results have been submitted to the [FlowerTune LLM NLP Leaderboard](https://flower.ai/benchmarks/llm-leaderboard/nlp/).

## Model Details

Please check the following GitHub project for model details and evaluation results:

[https://github.com/mrs83/FlowerTune-phi-4-NLP](https://github.com/mrs83/FlowerTune-phi-4-NLP)

## How to Get Started with the Model

Use this model as:

```
from peft import PeftModel
from transformers import AutoModelForCausalLM

base_model = AutoModelForCausalLM.from_pretrained("mrs83/FlowerTune-phi-4-NLP-PEFT")
model = PeftModel.from_pretrained(base_model, "mrs83/FlowerTune-phi-4-NLP-PEFT")
```

### Evaluation Results (Accuracy)

- **STEM**: 32.31 %
- **Social Sciences**: 67 %
- **Humanities**: WIP
- **Average**: WIP

### Communication Budget

45804.69  Megabytes

### Framework versions

- PEFT 0.14.0
- Flower 1.13.0