Add model card
Browse files
README.md
CHANGED
@@ -1,13 +1,55 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
## Usage
|
|
|
11 |
```python
|
12 |
from huggingface_hub import hf_hub_download
|
13 |
import torch
|
@@ -18,6 +60,34 @@ checkpoint = torch.load(model_path, map_location='cpu')
|
|
18 |
```
|
19 |
|
20 |
## Examples
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- molecular-generation
|
5 |
+
- controlnet
|
6 |
+
- chemistry
|
7 |
+
- scent-to-molecule
|
8 |
+
- text-to-smiles
|
9 |
+
- pytorch
|
10 |
+
library_name: pytorch
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
base_model: molecular-diffusion
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
datasets:
|
16 |
+
- sensory-molecules
|
17 |
+
metrics:
|
18 |
+
- mse
|
19 |
+
- bce
|
20 |
+
model-index:
|
21 |
+
- name: scent-to-molecule-controlnet
|
22 |
+
results:
|
23 |
+
- task:
|
24 |
+
type: text-to-molecular-generation
|
25 |
+
name: Text to Molecular Generation
|
26 |
+
dataset:
|
27 |
+
type: sensory-molecules
|
28 |
+
name: Sensory Molecules Dataset
|
29 |
+
metrics:
|
30 |
+
- type: validation_loss
|
31 |
+
value: 0.030441686697304248
|
32 |
+
name: Validation Loss
|
33 |
+
---
|
34 |
|
35 |
+
# 🧬 Scent-to-Molecule ControlNet
|
36 |
|
37 |
+
A ControlNet-style model that generates molecular structures (SMILES) from scent descriptions.
|
38 |
+
|
39 |
+
## Model Description
|
40 |
+
|
41 |
+
This model converts natural language scent descriptions into chemically valid SMILES representations of molecules that would produce those scents.
|
42 |
+
|
43 |
+
## Model Details
|
44 |
+
|
45 |
+
- **Training epochs**: 20
|
46 |
+
- **Best validation loss**: 0.030441686697304248
|
47 |
+
- **Model size**: 2.9 MB
|
48 |
+
- **Architecture**: ControlNet-style adapter with frozen molecular backbone
|
49 |
+
- **Text encoder**: sentence-transformers/all-MiniLM-L6-v2
|
50 |
|
51 |
## Usage
|
52 |
+
|
53 |
```python
|
54 |
from huggingface_hub import hf_hub_download
|
55 |
import torch
|
|
|
60 |
```
|
61 |
|
62 |
## Examples
|
63 |
+
|
64 |
+
| Input Description | Expected Output | Chemical Type |
|
65 |
+
|------------------|-----------------|---------------|
|
66 |
+
| "sweet vanilla scent" | Vanillin-like compounds | Phenolic aldehyde |
|
67 |
+
| "bitter coffee alkaloid" | Caffeine-like compounds | Purine alkaloid |
|
68 |
+
| "minty cooling fresh" | Menthol-like compounds | Monoterpene alcohol |
|
69 |
+
|
70 |
+
## Training Data
|
71 |
+
|
72 |
+
- **Training samples**: 815 compounds
|
73 |
+
- **Validation samples**: 157 compounds
|
74 |
+
- **Chemical categories**: 8 (esters, aldehydes, terpenes, phenolics, etc.)
|
75 |
+
|
76 |
+
## Limitations
|
77 |
+
|
78 |
+
- Uses mock molecular backbone (not full physics simulation)
|
79 |
+
- Template-based SMILES generation
|
80 |
+
- English-only descriptions
|
81 |
+
- Synthetic training dataset
|
82 |
+
|
83 |
+
## Citation
|
84 |
+
|
85 |
+
```bibtex
|
86 |
+
@misc{scent-to-molecule-controlnet,
|
87 |
+
title={Scent-to-Molecule ControlNet},
|
88 |
+
author={Hugging Face Community},
|
89 |
+
year={2025},
|
90 |
+
publisher={Hugging Face},
|
91 |
+
howpublished={\url{https://huggingface.co/munchers/scent-to-molecule}}
|
92 |
+
}
|
93 |
+
```
|