File size: 2,471 Bytes
8a98302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8183533
8a98302
8183533
8a98302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8183533
 
8a98302
8183533
 
8a98302
 
 
 
 
8183533
8a98302
 
 
 
 
8183533
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a98302
 
 
 
8183533
 
8a98302
8183533
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model: NousResearch/Llama-2-7b-chat-hf
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: instruction_tuned_model
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# instruction_tuned_model

This model is a fine-tuned version of [NousResearch/Llama-2-7b-chat-hf](https://huggingface.co/NousResearch/Llama-2-7b-chat-hf) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7426

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.9054        | 0.1571 | 100  | 0.9336          |
| 0.7821        | 0.3142 | 200  | 0.8612          |
| 0.7367        | 0.4713 | 300  | 0.8301          |
| 0.7238        | 0.6284 | 400  | 0.8054          |
| 0.6822        | 0.7855 | 500  | 0.7912          |
| 0.6511        | 0.9427 | 600  | 0.7823          |
| 0.6166        | 1.0998 | 700  | 0.7764          |
| 0.5797        | 1.2569 | 800  | 0.7649          |
| 0.5902        | 1.4140 | 900  | 0.7541          |
| 0.5916        | 1.5711 | 1000 | 0.7562          |
| 0.5816        | 1.7282 | 1100 | 0.7468          |
| 0.5662        | 1.8853 | 1200 | 0.7448          |
| 0.4927        | 2.0424 | 1300 | 0.7501          |
| 0.4796        | 2.1995 | 1400 | 0.7540          |
| 0.4683        | 2.3566 | 1500 | 0.7472          |
| 0.4854        | 2.5137 | 1600 | 0.7453          |
| 0.4733        | 2.6709 | 1700 | 0.7455          |
| 0.4643        | 2.8280 | 1800 | 0.7431          |
| 0.4535        | 2.9851 | 1900 | 0.7426          |


### Framework versions

- PEFT 0.13.2.dev0
- Transformers 4.45.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0