nabilfaieaz commited on
Commit
f9e026b
·
verified ·
1 Parent(s): 8fb15cb

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -0
README.md ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - ofir408/MedConceptsQA
4
+ language:
5
+ - en
6
+ metrics:
7
+ - accuracy
8
+ base_model:
9
+ - TinyLlama/TinyLlama-1.1B-Chat-v1.0
10
+ pipeline_tag: question-answering
11
+ library_name: transformers
12
+ tags:
13
+ - tinyllama
14
+ - lora
15
+ - instruction-tuned
16
+ - peft
17
+ - Lora
18
+ - merged
19
+ - medical
20
+ - healthcare
21
+ ---
22
+
23
+ # 🩺 TinyLlama Medical Assistant (Merged LoRA)
24
+
25
+ **Author:** Nabil Faieaz
26
+ **Base model:** [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
27
+ **Fine-tuning method:** LoRA (Low-Rank Adaptation) using PEFT → merged into base weights
28
+ **Intended use:** Concise, factual, general medical information
29
+
30
+ ---
31
+
32
+ ## 📌 Overview
33
+
34
+ This model is a **fine-tuned version of TinyLlama 1.1B-Chat** adapted for **medical question answering**.
35
+ It has been trained to give **brief and accurate** answers to medical-related queries, following a consistent Q/A style.
36
+
37
+ Key features:
38
+ - ✅ LoRA fine-tuning for efficient adaptation on limited compute (T4 GPU)
39
+ - ✅ Merged LoRA + base into a **single standalone model** (no separate adapter needed)
40
+ - ✅ Optimized for short, factual answers — avoids overly verbose outputs
41
+ - ✅ Context-aware: warns users to seek professional medical help for urgent/personal issues
42
+
43
+ ---
44
+
45
+ ## ⚠️ Disclaimer
46
+
47
+ > **This model is for educational and informational purposes only.**
48
+ > It is **not** a substitute for professional medical advice, diagnosis, or treatment.
49
+ > Always consult a qualified healthcare provider for medical concerns.
50
+
51
+ ---
52
+
53
+ ## 🚀 Quick Start
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModelForCausalLM
57
+
58
+ model_id = "nabilfaieaz/tinyllama-med-full"
59
+
60
+ # Load tokenizer and model
61
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
62
+ if tokenizer.pad_token is None:
63
+ tokenizer.pad_token = tokenizer.eos_token
64
+
65
+ model = AutoModelForCausalLM.from_pretrained(
66
+ model_id,
67
+ torch_dtype="auto",
68
+ device_map="auto"
69
+ )
70
+
71
+ # Example prompt
72
+ system_prompt = (
73
+ "You are a helpful, concise medical assistant. Provide general information only, "
74
+ "not a diagnosis. If urgent or personal issues are mentioned, advise seeing a clinician."
75
+ )
76
+
77
+ question = "What is hypertension?"
78
+ prompt = f"{system_prompt}\n\nQuestion: {question}\nAnswer:"
79
+
80
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
81
+ outputs = model.generate(
82
+ **inputs,
83
+ max_new_tokens=128,
84
+ do_sample=False,
85
+ temperature=0.0,
86
+ top_p=1.0,
87
+ eos_token_id=tokenizer.eos_token_id,
88
+ pad_token_id=tokenizer.pad_token_id
89
+ )
90
+
91
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
92
+
93
+ 🧠 Training Details
94
+ Base model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
95
+ Fine-tuning method: LoRA (via peft)
96
+ Target modules: q_proj, k_proj, v_proj, o_proj
97
+ LoRA config:
98
+ * r = 16
99
+ * alpha = 16
100
+ * dropout = 0.0
101
+ Max sequence length: 512 tokens
102
+ Batch size: 2 per device (gradient accumulation for effective batch)
103
+ Learning rate: 2e-4
104
+ Precision: fp16
105
+ Evaluation: periodic eval every 200 steps
106
+ Checkpoints: saved every 500 steps, final merge from checkpoint-17000
107
+
108
+ 📊 Intended Use
109
+ Intended:
110
+ * Educational explanations of medical terms and concepts
111
+ * Study aid for medical students and healthcare professionals
112
+ * Healthcare-related chatbot demos
113
+
114
+ Not intended:
115
+ * Real-time clinical decision making
116
+ * Emergency medical guidance
117
+ * Handling sensitive personal medical data (PHI)
118
+ ⚙️ Technical Notes
119
+ * The model is merged — you don’t need to separately load LoRA adapters.
120
+ * Works with Hugging Face transformers ≥ 4.38.
121
+ * Can be quantized to 4-bit (e.g., QLoRA) for local inference.
122
+