nachshonc commited on
Commit
5a509b9
·
1 Parent(s): f0696a4

First model for rl course unit 1

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 268.06 +/- 23.56
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8493eabca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8493eabd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8493eabdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8493eabe50>", "_build": "<function ActorCriticPolicy._build at 0x7f8493eabee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8493eabf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8493e2f040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8493e2f0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8493e2f160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8493e2f1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8493e2f280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8493eaa450>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671701058591510124, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpXsLz3zKE+wHCXPTGrfL5C5Dy7THHAPQAAAAAAAAAAAOjPOxZpsT8K5E0+wz/KvlCLo7qfQxE9AAAAAAAAAAB65Ds+Z4qOP5AnHT9WW96+p5pGPtzArD4AAAAAAAAAALPetr1Iz9M7mYwFPH04Sb4btGC9TttfvQAAAAAAAAAAAJhfO/VCvT+aXQ89LGGzPgfw5LnAlV09AAAAAAAAAAAzc6m8Uhz6u7ZwyTq2qLA7StZWPcsPoLwAAIA/AACAP4CVdL36V2c+Blq8Ot+yjr4UkRU8Kj7+PQAAAAAAAAAAWirQva2cgD/gLoe9kUq7vjz9Db76Oac9AAAAAAAAAADm/L+9wxVPOZ3uqbpmAdU0Rj/pu6b2zjkAAAAAAACAP6Nmar4LXGM/P+MHPNtzmr4x+ny+XQ6yPQAAAAAAAAAAZosvvVyPQjdq6Ty4ZoaLs82gpDvF0GI3AACAPwAAgD/Najq8nHxtvO7LjjzNt/E8ZoDUPQ0Bv70AAIA/AACAPwDGBLz4PiE/eWggvQedx74dPLq8jUYUPAAAAAAAAAAAM6HAvEq3tz9QGzi+zj0NveNTQjx+GPS9AAAAAAAAAAAmwLY9FJifuj2LczlkxUs0cIgZOcIWjLgAAIA/AAAAAAC70rxxZAO7bs8cOwMfmDxnb8m7D0eDPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdHtJY7QzbUCUhpRSlIwBbJRNCQGMAXSUR0CQ6/91EE1VdX2UKGgGaAloD0MIBkmfVhHJcECUhpRSlGgVTQ4BaBZHQJD+0lw97nh1fZQoaAZoCWgPQwggDDz3nudxQJSGlFKUaBVNHwFoFkdAkP8q8xsVL3V9lChoBmgJaA9DCOgVTz0SgXBAlIaUUpRoFU0JAWgWR0CQ//tvGZNPdX2UKGgGaAloD0MIEywOZz4YcUCUhpRSlGgVTUABaBZHQJEBX336AOJ1fZQoaAZoCWgPQwhEMXkDjOVwQJSGlFKUaBVNAwFoFkdAkQH9VFQVK3V9lChoBmgJaA9DCOF7f4O2hXBAlIaUUpRoFU1EAWgWR0CRAmNgSeyzdX2UKGgGaAloD0MIOQ1Rhb+2cECUhpRSlGgVTTkBaBZHQJECn029+PR1fZQoaAZoCWgPQwje40wTdnlwQJSGlFKUaBVNfAFoFkdAkQVQe/5+IHV9lChoBmgJaA9DCCaMZmW7+3JAlIaUUpRoFU0MAWgWR0CRBkTFERapdX2UKGgGaAloD0MIxLEubiPJcUCUhpRSlGgVTTgBaBZHQJEGRgfEGaB1fZQoaAZoCWgPQwgCY30DU/VxQJSGlFKUaBVNFwFoFkdAkQasfV7QcHV9lChoBmgJaA9DCDyjrUrirnFAlIaUUpRoFU2qAWgWR0CRBtHim2srdX2UKGgGaAloD0MIUfUrnY+5a0CUhpRSlGgVTZcDaBZHQJEJ+OzY2891fZQoaAZoCWgPQwgAcVevIqVyQJSGlFKUaBVNSwFoFkdAkQoc2rGR3nV9lChoBmgJaA9DCDy+vWuQXnBAlIaUUpRoFU1JAWgWR0CRCoRVIZqEdX2UKGgGaAloD0MIN6lorP0ab0CUhpRSlGgVTdcCaBZHQJEK3XI2fkF1fZQoaAZoCWgPQwiUh4Va07RtQJSGlFKUaBVNNwFoFkdAkQr+zyBkJHV9lChoBmgJaA9DCMsUcxD0q25AlIaUUpRoFU0YAWgWR0CRCz9Dx9XtdX2UKGgGaAloD0MIb/CFyZSRcECUhpRSlGgVTRYBaBZHQJEMTpaA4GV1fZQoaAZoCWgPQwj27o/3atxwQJSGlFKUaBVNKwFoFkdAkQxlENOM2nV9lChoBmgJaA9DCEQV/gxvbXBAlIaUUpRoFU0jAWgWR0CRDH1X/5tWdX2UKGgGaAloD0MIyQT8GolockCUhpRSlGgVTbABaBZHQJEN4XSBshx1fZQoaAZoCWgPQwjfbd446cFxQJSGlFKUaBVNEgFoFkdAkQ5h+BpYcXV9lChoBmgJaA9DCNv9KsC3AHBAlIaUUpRoFU0OAWgWR0CRD0L2pQ1rdX2UKGgGaAloD0MIrkoi+yDBb0CUhpRSlGgVTR8BaBZHQJEQPOjZcs11fZQoaAZoCWgPQwgFhqxuteZwQJSGlFKUaBVNPgFoFkdAkRDjmwJPZnV9lChoBmgJaA9DCIS3ByGgCXJAlIaUUpRoFU0VAWgWR0CREwk/8l5XdX2UKGgGaAloD0MIvVKWIY4rTUCUhpRSlGgVS9poFkdAkROkZ3s5XHV9lChoBmgJaA9DCDKs4o1MYnFAlIaUUpRoFU0YAWgWR0CRFEu8K5TZdX2UKGgGaAloD0MILJ56pMFNc0CUhpRSlGgVS/loFkdAkRS2EK3NLXV9lChoBmgJaA9DCIFZoUj31nBAlIaUUpRoFU0vAWgWR0CRFP2qT8pDdX2UKGgGaAloD0MIgQcGEP4Jc0CUhpRSlGgVTUQBaBZHQJEVYGfPHDJ1fZQoaAZoCWgPQwgRGOsbGORxQJSGlFKUaBVNHwFoFkdAkRhfHPu5SXV9lChoBmgJaA9DCM+Du7P2vXJAlIaUUpRoFU0dAWgWR0CRGOQFLWZrdX2UKGgGaAloD0MIyAbSxWbucUCUhpRSlGgVTScBaBZHQJEaMpKBd2R1fZQoaAZoCWgPQwi/YaJBCiplQJSGlFKUaBVN6ANoFkdAkRr1MdtEX3V9lChoBmgJaA9DCN/CuvGu3nBAlIaUUpRoFU05AWgWR0CRHPIQe3hGdX2UKGgGaAloD0MItU5cjteMb0CUhpRSlGgVTQABaBZHQJEdLXQMQVd1fZQoaAZoCWgPQwh6ppcYy4RvQJSGlFKUaBVNXQFoFkdAkR2ZjYqXnnV9lChoBmgJaA9DCLiQR3DjdHBAlIaUUpRoFU0WAWgWR0CRHo41P3zudX2UKGgGaAloD0MI9Pv+zYupcUCUhpRSlGgVTRcBaBZHQJEfop1A7gd1fZQoaAZoCWgPQwgBMJ5Bg1lyQJSGlFKUaBVNGwFoFkdAkSB4WUKRdXV9lChoBmgJaA9DCNHOaRbomHNAlIaUUpRoFU07AWgWR0CRII3EQ5FPdX2UKGgGaAloD0MI58dfWtQhSkCUhpRSlGgVS7ZoFkdAkSE2mLtNSXV9lChoBmgJaA9DCKm9iLZjK3FAlIaUUpRoFU1GAmgWR0CRIcidJ8OTdX2UKGgGaAloD0MIBtUGJ6Jfoz+UhpRSlGgVS+toFkdAkSHowudwvXV9lChoBmgJaA9DCHpQUIpWtXFAlIaUUpRoFU0KAWgWR0CRInJpnHvMdX2UKGgGaAloD0MIml/NAYI3cECUhpRSlGgVTQUBaBZHQJE2zxpcoph1fZQoaAZoCWgPQwi5p6s7VkpyQJSGlFKUaBVNFQNoFkdAkTjV8ohIOHV9lChoBmgJaA9DCPA2b5zUTXBAlIaUUpRoFU0MAWgWR0CROSl1KXfJdX2UKGgGaAloD0MI3gGetPBobUCUhpRSlGgVTSIBaBZHQJE5w+7lJYl1fZQoaAZoCWgPQwhi9x3DYz1uQJSGlFKUaBVNFgFoFkdAkTreBxxT9HV9lChoBmgJaA9DCG8u/ranaHBAlIaUUpRoFU02AWgWR0CROwv9tMwldX2UKGgGaAloD0MIraQV35BzcUCUhpRSlGgVTQcBaBZHQJE7VxXGOuJ1fZQoaAZoCWgPQwjx8J4DS0luQJSGlFKUaBVL92gWR0CRO4z8xbjcdX2UKGgGaAloD0MIVg4tsp3HVkCUhpRSlGgVTegDaBZHQJE8/0yxiXp1fZQoaAZoCWgPQwjo3VhQmH1xQJSGlFKUaBVNGgFoFkdAkT13KB/ZunV9lChoBmgJaA9DCA5nfjWHWnFAlIaUUpRoFU0RAWgWR0CRPdNutOmBdX2UKGgGaAloD0MIeF4qNma5bUCUhpRSlGgVTTMBaBZHQJE+yLMs6JZ1fZQoaAZoCWgPQwiq0hbX+G9vQJSGlFKUaBVNKwFoFkdAkT86akRBeHV9lChoBmgJaA9DCHB5rBmZ3nFAlIaUUpRoFU1qAWgWR0CRP2rWRRuTdX2UKGgGaAloD0MI4uXpXFHqZkCUhpRSlGgVTegDaBZHQJFBCBPKuCB1fZQoaAZoCWgPQwh0Q1N2OihzQJSGlFKUaBVNBQFoFkdAkUGK4+bExnV9lChoBmgJaA9DCAUYlj/fJEdAlIaUUpRoFUv0aBZHQJFBywjdHlR1fZQoaAZoCWgPQwivz5z1Ka9CQJSGlFKUaBVL1mgWR0CRQdOkcjqwdX2UKGgGaAloD0MIYymSrwQQcECUhpRSlGgVTRIBaBZHQJFCJ8D0UXZ1fZQoaAZoCWgPQwitwmaACxdtQJSGlFKUaBVNBQFoFkdAkUNWiUPhAHV9lChoBmgJaA9DCFhUxOmkwnFAlIaUUpRoFU0BAWgWR0CRQ3/Ue+23dX2UKGgGaAloD0MIr0FfevsabUCUhpRSlGgVTQ4BaBZHQJFELvSc9W91fZQoaAZoCWgPQwjzyYrharlxQJSGlFKUaBVL62gWR0CRRSjBEa2ndX2UKGgGaAloD0MI9MMI4VELbUCUhpRSlGgVS/xoFkdAkUVamTC+DnV9lChoBmgJaA9DCBFy3v/HRHBAlIaUUpRoFU0eAWgWR0CRRfVbRne0dX2UKGgGaAloD0MIAFXcuAXZckCUhpRSlGgVS/5oFkdAkUalVLi++XV9lChoBmgJaA9DCCoaa38nc3BAlIaUUpRoFU0AAWgWR0CRRxsOXmeUdX2UKGgGaAloD0MIcVga+NFRb0CUhpRSlGgVTQUBaBZHQJFHcJUo8ZF1fZQoaAZoCWgPQwj+1HjpJl9xQJSGlFKUaBVNAwJoFkdAkUeurdWQwXV9lChoBmgJaA9DCHbgnBElqmBAlIaUUpRoFU3oA2gWR0CRSeHpbD/EdX2UKGgGaAloD0MIAyUFFsC4bUCUhpRSlGgVTRcBaBZHQJFKT/1g6U91fZQoaAZoCWgPQwhSCrq95JZxQJSGlFKUaBVNEAFoFkdAkUp4KQaJh3V9lChoBmgJaA9DCOun/6x5PHJAlIaUUpRoFU09AWgWR0CRSrZflZHNdX2UKGgGaAloD0MIs9E5P0WvbkCUhpRSlGgVTSwBaBZHQJFM6T1TR6Z1fZQoaAZoCWgPQwj9uz5z1mJxQJSGlFKUaBVNNQFoFkdAkU0NwrDqGHV9lChoBmgJaA9DCBFUjV7N0HFAlIaUUpRoFU0gAWgWR0CRTTAXVLBbdX2UKGgGaAloD0MI7RD/sCVQcUCUhpRSlGgVTQsBaBZHQJFNwgjhUBJ1fZQoaAZoCWgPQwgTglX18s5vQJSGlFKUaBVNHAFoFkdAkU4c6eXiSHV9lChoBmgJaA9DCFvtYS/UCHJAlIaUUpRoFU2YAWgWR0CRTonP3SKFdX2UKGgGaAloD0MIjQ5Iwj4Wb0CUhpRSlGgVS/JoFkdAkU7UmD15B3V9lChoBmgJaA9DCM9Nm3FaPnBAlIaUUpRoFU0xAWgWR0CRT44dZJTVdX2UKGgGaAloD0MI+Ki/XuENcECUhpRSlGgVTSMBaBZHQJFP0xvegth1fZQoaAZoCWgPQwjMYfcdg3ZwQJSGlFKUaBVNDAFoFkdAkU/0Iw/PgXV9lChoBmgJaA9DCFq9w+3QYE5AlIaUUpRoFUvQaBZHQJFQik43m3h1fZQoaAZoCWgPQwjV6UDWEzpxQJSGlFKUaBVNMgFoFkdAkVE8lb/wRXV9lChoBmgJaA9DCDc10HxONHNAlIaUUpRoFU0GAWgWR0CRUn0th/iHdX2UKGgGaAloD0MI8ghupGwdTkCUhpRSlGgVS+hoFkdAkVQMkhRqGnV9lChoBmgJaA9DCBADXftC6nBAlIaUUpRoFU1JAWgWR0CRVHbADaGpdX2UKGgGaAloD0MI2uTwSecscECUhpRSlGgVTRIBaBZHQJFVZBLPD511fZQoaAZoCWgPQwjzcth9x4xAQJSGlFKUaBVL0WgWR0CRVeCgsbvPdX2UKGgGaAloD0MItoXnpeIXc0CUhpRSlGgVTSkBaBZHQJFWDo9s7+11fZQoaAZoCWgPQwgogjgPJ3BvQJSGlFKUaBVNmwJoFkdAkVYyjgydnXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52c9471946d49a714b50ab61ea769765150cc9778f8cd4fa9553f1a868735857
3
+ size 147202
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8493eabca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8493eabd30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8493eabdc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8493eabe50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f8493eabee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f8493eabf70>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8493e2f040>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f8493e2f0d0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8493e2f160>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8493e2f1f0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8493e2f280>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f8493eaa450>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671701058591510124,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJpXsLz3zKE+wHCXPTGrfL5C5Dy7THHAPQAAAAAAAAAAAOjPOxZpsT8K5E0+wz/KvlCLo7qfQxE9AAAAAAAAAAB65Ds+Z4qOP5AnHT9WW96+p5pGPtzArD4AAAAAAAAAALPetr1Iz9M7mYwFPH04Sb4btGC9TttfvQAAAAAAAAAAAJhfO/VCvT+aXQ89LGGzPgfw5LnAlV09AAAAAAAAAAAzc6m8Uhz6u7ZwyTq2qLA7StZWPcsPoLwAAIA/AACAP4CVdL36V2c+Blq8Ot+yjr4UkRU8Kj7+PQAAAAAAAAAAWirQva2cgD/gLoe9kUq7vjz9Db76Oac9AAAAAAAAAADm/L+9wxVPOZ3uqbpmAdU0Rj/pu6b2zjkAAAAAAACAP6Nmar4LXGM/P+MHPNtzmr4x+ny+XQ6yPQAAAAAAAAAAZosvvVyPQjdq6Ty4ZoaLs82gpDvF0GI3AACAPwAAgD/Najq8nHxtvO7LjjzNt/E8ZoDUPQ0Bv70AAIA/AACAPwDGBLz4PiE/eWggvQedx74dPLq8jUYUPAAAAAAAAAAAM6HAvEq3tz9QGzi+zj0NveNTQjx+GPS9AAAAAAAAAAAmwLY9FJifuj2LczlkxUs0cIgZOcIWjLgAAIA/AAAAAAC70rxxZAO7bs8cOwMfmDxnb8m7D0eDPQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIdHtJY7QzbUCUhpRSlIwBbJRNCQGMAXSUR0CQ6/91EE1VdX2UKGgGaAloD0MIBkmfVhHJcECUhpRSlGgVTQ4BaBZHQJD+0lw97nh1fZQoaAZoCWgPQwggDDz3nudxQJSGlFKUaBVNHwFoFkdAkP8q8xsVL3V9lChoBmgJaA9DCOgVTz0SgXBAlIaUUpRoFU0JAWgWR0CQ//tvGZNPdX2UKGgGaAloD0MIEywOZz4YcUCUhpRSlGgVTUABaBZHQJEBX336AOJ1fZQoaAZoCWgPQwhEMXkDjOVwQJSGlFKUaBVNAwFoFkdAkQH9VFQVK3V9lChoBmgJaA9DCOF7f4O2hXBAlIaUUpRoFU1EAWgWR0CRAmNgSeyzdX2UKGgGaAloD0MIOQ1Rhb+2cECUhpRSlGgVTTkBaBZHQJECn029+PR1fZQoaAZoCWgPQwje40wTdnlwQJSGlFKUaBVNfAFoFkdAkQVQe/5+IHV9lChoBmgJaA9DCCaMZmW7+3JAlIaUUpRoFU0MAWgWR0CRBkTFERapdX2UKGgGaAloD0MIxLEubiPJcUCUhpRSlGgVTTgBaBZHQJEGRgfEGaB1fZQoaAZoCWgPQwgCY30DU/VxQJSGlFKUaBVNFwFoFkdAkQasfV7QcHV9lChoBmgJaA9DCDyjrUrirnFAlIaUUpRoFU2qAWgWR0CRBtHim2srdX2UKGgGaAloD0MIUfUrnY+5a0CUhpRSlGgVTZcDaBZHQJEJ+OzY2891fZQoaAZoCWgPQwgAcVevIqVyQJSGlFKUaBVNSwFoFkdAkQoc2rGR3nV9lChoBmgJaA9DCDy+vWuQXnBAlIaUUpRoFU1JAWgWR0CRCoRVIZqEdX2UKGgGaAloD0MIN6lorP0ab0CUhpRSlGgVTdcCaBZHQJEK3XI2fkF1fZQoaAZoCWgPQwiUh4Va07RtQJSGlFKUaBVNNwFoFkdAkQr+zyBkJHV9lChoBmgJaA9DCMsUcxD0q25AlIaUUpRoFU0YAWgWR0CRCz9Dx9XtdX2UKGgGaAloD0MIb/CFyZSRcECUhpRSlGgVTRYBaBZHQJEMTpaA4GV1fZQoaAZoCWgPQwj27o/3atxwQJSGlFKUaBVNKwFoFkdAkQxlENOM2nV9lChoBmgJaA9DCEQV/gxvbXBAlIaUUpRoFU0jAWgWR0CRDH1X/5tWdX2UKGgGaAloD0MIyQT8GolockCUhpRSlGgVTbABaBZHQJEN4XSBshx1fZQoaAZoCWgPQwjfbd446cFxQJSGlFKUaBVNEgFoFkdAkQ5h+BpYcXV9lChoBmgJaA9DCNv9KsC3AHBAlIaUUpRoFU0OAWgWR0CRD0L2pQ1rdX2UKGgGaAloD0MIrkoi+yDBb0CUhpRSlGgVTR8BaBZHQJEQPOjZcs11fZQoaAZoCWgPQwgFhqxuteZwQJSGlFKUaBVNPgFoFkdAkRDjmwJPZnV9lChoBmgJaA9DCIS3ByGgCXJAlIaUUpRoFU0VAWgWR0CREwk/8l5XdX2UKGgGaAloD0MIvVKWIY4rTUCUhpRSlGgVS9poFkdAkROkZ3s5XHV9lChoBmgJaA9DCDKs4o1MYnFAlIaUUpRoFU0YAWgWR0CRFEu8K5TZdX2UKGgGaAloD0MILJ56pMFNc0CUhpRSlGgVS/loFkdAkRS2EK3NLXV9lChoBmgJaA9DCIFZoUj31nBAlIaUUpRoFU0vAWgWR0CRFP2qT8pDdX2UKGgGaAloD0MIgQcGEP4Jc0CUhpRSlGgVTUQBaBZHQJEVYGfPHDJ1fZQoaAZoCWgPQwgRGOsbGORxQJSGlFKUaBVNHwFoFkdAkRhfHPu5SXV9lChoBmgJaA9DCM+Du7P2vXJAlIaUUpRoFU0dAWgWR0CRGOQFLWZrdX2UKGgGaAloD0MIyAbSxWbucUCUhpRSlGgVTScBaBZHQJEaMpKBd2R1fZQoaAZoCWgPQwi/YaJBCiplQJSGlFKUaBVN6ANoFkdAkRr1MdtEX3V9lChoBmgJaA9DCN/CuvGu3nBAlIaUUpRoFU05AWgWR0CRHPIQe3hGdX2UKGgGaAloD0MItU5cjteMb0CUhpRSlGgVTQABaBZHQJEdLXQMQVd1fZQoaAZoCWgPQwh6ppcYy4RvQJSGlFKUaBVNXQFoFkdAkR2ZjYqXnnV9lChoBmgJaA9DCLiQR3DjdHBAlIaUUpRoFU0WAWgWR0CRHo41P3zudX2UKGgGaAloD0MI9Pv+zYupcUCUhpRSlGgVTRcBaBZHQJEfop1A7gd1fZQoaAZoCWgPQwgBMJ5Bg1lyQJSGlFKUaBVNGwFoFkdAkSB4WUKRdXV9lChoBmgJaA9DCNHOaRbomHNAlIaUUpRoFU07AWgWR0CRII3EQ5FPdX2UKGgGaAloD0MI58dfWtQhSkCUhpRSlGgVS7ZoFkdAkSE2mLtNSXV9lChoBmgJaA9DCKm9iLZjK3FAlIaUUpRoFU1GAmgWR0CRIcidJ8OTdX2UKGgGaAloD0MIBtUGJ6Jfoz+UhpRSlGgVS+toFkdAkSHowudwvXV9lChoBmgJaA9DCHpQUIpWtXFAlIaUUpRoFU0KAWgWR0CRInJpnHvMdX2UKGgGaAloD0MIml/NAYI3cECUhpRSlGgVTQUBaBZHQJE2zxpcoph1fZQoaAZoCWgPQwi5p6s7VkpyQJSGlFKUaBVNFQNoFkdAkTjV8ohIOHV9lChoBmgJaA9DCPA2b5zUTXBAlIaUUpRoFU0MAWgWR0CROSl1KXfJdX2UKGgGaAloD0MI3gGetPBobUCUhpRSlGgVTSIBaBZHQJE5w+7lJYl1fZQoaAZoCWgPQwhi9x3DYz1uQJSGlFKUaBVNFgFoFkdAkTreBxxT9HV9lChoBmgJaA9DCG8u/ranaHBAlIaUUpRoFU02AWgWR0CROwv9tMwldX2UKGgGaAloD0MIraQV35BzcUCUhpRSlGgVTQcBaBZHQJE7VxXGOuJ1fZQoaAZoCWgPQwjx8J4DS0luQJSGlFKUaBVL92gWR0CRO4z8xbjcdX2UKGgGaAloD0MIVg4tsp3HVkCUhpRSlGgVTegDaBZHQJE8/0yxiXp1fZQoaAZoCWgPQwjo3VhQmH1xQJSGlFKUaBVNGgFoFkdAkT13KB/ZunV9lChoBmgJaA9DCA5nfjWHWnFAlIaUUpRoFU0RAWgWR0CRPdNutOmBdX2UKGgGaAloD0MIeF4qNma5bUCUhpRSlGgVTTMBaBZHQJE+yLMs6JZ1fZQoaAZoCWgPQwiq0hbX+G9vQJSGlFKUaBVNKwFoFkdAkT86akRBeHV9lChoBmgJaA9DCHB5rBmZ3nFAlIaUUpRoFU1qAWgWR0CRP2rWRRuTdX2UKGgGaAloD0MI4uXpXFHqZkCUhpRSlGgVTegDaBZHQJFBCBPKuCB1fZQoaAZoCWgPQwh0Q1N2OihzQJSGlFKUaBVNBQFoFkdAkUGK4+bExnV9lChoBmgJaA9DCAUYlj/fJEdAlIaUUpRoFUv0aBZHQJFBywjdHlR1fZQoaAZoCWgPQwivz5z1Ka9CQJSGlFKUaBVL1mgWR0CRQdOkcjqwdX2UKGgGaAloD0MIYymSrwQQcECUhpRSlGgVTRIBaBZHQJFCJ8D0UXZ1fZQoaAZoCWgPQwitwmaACxdtQJSGlFKUaBVNBQFoFkdAkUNWiUPhAHV9lChoBmgJaA9DCFhUxOmkwnFAlIaUUpRoFU0BAWgWR0CRQ3/Ue+23dX2UKGgGaAloD0MIr0FfevsabUCUhpRSlGgVTQ4BaBZHQJFELvSc9W91fZQoaAZoCWgPQwjzyYrharlxQJSGlFKUaBVL62gWR0CRRSjBEa2ndX2UKGgGaAloD0MI9MMI4VELbUCUhpRSlGgVS/xoFkdAkUVamTC+DnV9lChoBmgJaA9DCBFy3v/HRHBAlIaUUpRoFU0eAWgWR0CRRfVbRne0dX2UKGgGaAloD0MIAFXcuAXZckCUhpRSlGgVS/5oFkdAkUalVLi++XV9lChoBmgJaA9DCCoaa38nc3BAlIaUUpRoFU0AAWgWR0CRRxsOXmeUdX2UKGgGaAloD0MIcVga+NFRb0CUhpRSlGgVTQUBaBZHQJFHcJUo8ZF1fZQoaAZoCWgPQwj+1HjpJl9xQJSGlFKUaBVNAwJoFkdAkUeurdWQwXV9lChoBmgJaA9DCHbgnBElqmBAlIaUUpRoFU3oA2gWR0CRSeHpbD/EdX2UKGgGaAloD0MIAyUFFsC4bUCUhpRSlGgVTRcBaBZHQJFKT/1g6U91fZQoaAZoCWgPQwhSCrq95JZxQJSGlFKUaBVNEAFoFkdAkUp4KQaJh3V9lChoBmgJaA9DCOun/6x5PHJAlIaUUpRoFU09AWgWR0CRSrZflZHNdX2UKGgGaAloD0MIs9E5P0WvbkCUhpRSlGgVTSwBaBZHQJFM6T1TR6Z1fZQoaAZoCWgPQwj9uz5z1mJxQJSGlFKUaBVNNQFoFkdAkU0NwrDqGHV9lChoBmgJaA9DCBFUjV7N0HFAlIaUUpRoFU0gAWgWR0CRTTAXVLBbdX2UKGgGaAloD0MI7RD/sCVQcUCUhpRSlGgVTQsBaBZHQJFNwgjhUBJ1fZQoaAZoCWgPQwgTglX18s5vQJSGlFKUaBVNHAFoFkdAkU4c6eXiSHV9lChoBmgJaA9DCFvtYS/UCHJAlIaUUpRoFU2YAWgWR0CRTonP3SKFdX2UKGgGaAloD0MIjQ5Iwj4Wb0CUhpRSlGgVS/JoFkdAkU7UmD15B3V9lChoBmgJaA9DCM9Nm3FaPnBAlIaUUpRoFU0xAWgWR0CRT44dZJTVdX2UKGgGaAloD0MI+Ki/XuENcECUhpRSlGgVTSMBaBZHQJFP0xvegth1fZQoaAZoCWgPQwjMYfcdg3ZwQJSGlFKUaBVNDAFoFkdAkU/0Iw/PgXV9lChoBmgJaA9DCFq9w+3QYE5AlIaUUpRoFUvQaBZHQJFQik43m3h1fZQoaAZoCWgPQwjV6UDWEzpxQJSGlFKUaBVNMgFoFkdAkVE8lb/wRXV9lChoBmgJaA9DCDc10HxONHNAlIaUUpRoFU0GAWgWR0CRUn0th/iHdX2UKGgGaAloD0MI8ghupGwdTkCUhpRSlGgVS+hoFkdAkVQMkhRqGnV9lChoBmgJaA9DCBADXftC6nBAlIaUUpRoFU1JAWgWR0CRVHbADaGpdX2UKGgGaAloD0MI2uTwSecscECUhpRSlGgVTRIBaBZHQJFVZBLPD511fZQoaAZoCWgPQwjzcth9x4xAQJSGlFKUaBVL0WgWR0CRVeCgsbvPdX2UKGgGaAloD0MItoXnpeIXc0CUhpRSlGgVTSkBaBZHQJFWDo9s7+11fZQoaAZoCWgPQwgogjgPJ3BvQJSGlFKUaBVNmwJoFkdAkVYyjgydnXVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 248,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59a66a7f2ffd5dfe1ba7d0a6d510970bdd5edda6307602b6643c65299bc0433f
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0dcbfe101669bca7cddac987928d49e1e7d33d00299fbe461e5bb476f322515a
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (225 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 268.0571199478917, "std_reward": 23.5625115794028, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-22T09:47:20.415858"}