--- license: mit language: - en base_model: - google/efficientnet-b0 --- EfficientNet-B0 Model for Image Classification This repository contains an EfficientNet-B0 model trained on a custom dataset for image classification tasks. Model Details - Architecture: EfficientNet-B0 - Input Size: 224x224 RGB images - Number of Classes: 10 - Dataset: Custom dataset with 10 categories - Optimizer: AdamW - Loss Function: CrossEntropyLoss - Validation Accuracy: 85.3% - Device Used for Training: CUDA (GPU) Usage Load the Model To load the model, use the following code: ``` import torch Load model and metadata model = torch.load("efficientnet-results-and-model.pth", map_location="cpu") Access class-to-index mapping class_to_idx = model['class_to_idx'] Load the state dictionary state_dict = model['model_state_dict'] Reconstruct EfficientNet-B0 from torchvision.models import efficientnet_b0 model = efficientnet_b0(weights=None) model.classifier[1] = torch.nn.Linear(model.classifier[1].in_features, len(class_to_idx)) model.load_state_dict(state_dict) model.eval() print("Model successfully loaded!") Training Details Learning Rate: 0.001 Batch Size: 32 Epochs: 3 Augmentations: Random Resized Crop Horizontal Flip Color Jitter Normalization (mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225]) Files in this Repository best_model.pth: Trained model weights efficientnet.json: Model configuration file README.md: Documentation for this model efficientnet.txt: Training Results Acknowledgments Framework: PyTorch Pretrained Weights: TorchVision Training: Mixed precision using torch.cuda.amp for efficient training on GPU.