File size: 19,533 Bytes
ec9aa24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
wandb: WARNING The get_url method is deprecated and will be removed in a future release. Please use `run.url` instead.
Saving model checkpoint to ./results/checkpoint-10
tokenizer config file saved in ./results/checkpoint-10/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-10/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-20
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-20/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-20/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-30
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-30/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-30/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-40
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-40/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-40/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-50
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-50/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-50/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-60
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-60/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-60/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-70
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-70/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-70/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-80
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-80/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-80/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-90
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-90/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-90/special_tokens_map.json
/usr/local/lib/python3.11/dist-packages/torch/_dynamo/eval_frame.py:745: UserWarning: torch.utils.checkpoint: the use_reentrant parameter should be passed explicitly. In version 2.5 we will raise an exception if use_reentrant is not passed. use_reentrant=False is recommended, but if you need to preserve the current default behavior, you can pass use_reentrant=True. Refer to docs for more details on the differences between the two variants.
  return fn(*args, **kwargs)
Saving model checkpoint to ./results/checkpoint-100
loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--mistralai--Mistral-7B-v0.1/snapshots/7231864981174d9bee8c7687c24c8344414eae6b/config.json
Model config MistralConfig {
  "architectures": [
    "MistralForCausalLM"
  ],
  "attention_dropout": 0.0,
  "bos_token_id": 1,
  "eos_token_id": 2,
  "head_dim": null,
  "hidden_act": "silu",
  "hidden_size": 4096,
  "initializer_range": 0.02,
  "intermediate_size": 14336,
  "max_position_embeddings": 32768,
  "model_type": "mistral",
  "num_attention_heads": 32,
  "num_hidden_layers": 32,
  "num_key_value_heads": 8,
  "rms_norm_eps": 1e-05,
  "rope_theta": 10000.0,
  "sliding_window": 4096,
  "tie_word_embeddings": false,
  "torch_dtype": "bfloat16",
  "transformers_version": "4.53.2",
  "use_cache": true,
  "vocab_size": 32000
}

tokenizer config file saved in ./results/checkpoint-100/tokenizer_config.json
Special tokens file saved in ./results/checkpoint-100/special_tokens_map.json


Training completed. Do not forget to share your model on huggingface.co/models =)


/usr/local/lib/python3.11/dist-packages/peft/tuners/tuners_utils.py:190: UserWarning: Already found a `peft_config` attribute in the model. This will lead to having multiple adapters in the model. Make sure to know what you are doing!
  warnings.warn(
/usr/local/lib/python3.11/dist-packages/peft/peft_model.py:585: UserWarning: Found missing adapter keys while loading the checkpoint: ['base_model.model.base_model.model.model.layers.0.self_attn.q_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.q_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.k_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.k_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.v_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.v_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.o_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.self_attn.o_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.0.mlp.gate_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.mlp.gate_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.0.mlp.up_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.mlp.up_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.0.mlp.down_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.0.mlp.down_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.q_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.q_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.k_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.k_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.v_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.v_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.o_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.self_attn.o_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.mlp.gate_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.mlp.gate_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.mlp.up_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.mlp.up_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.1.mlp.down_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.1.mlp.down_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.q_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.q_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.k_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.k_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.v_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.v_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.o_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.self_attn.o_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.mlp.gate_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.mlp.gate_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.mlp.up_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.mlp.up_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.2.mlp.down_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.2.mlp.down_proj.lora_B.default.weight', 'base_model.model.base_model.model.model.layers.3.self_attn.q_proj.lora_A.default.weight', 'base_model.model.base_model.model.model.layers.3.self_attn.q_proj.lora_B.default.weight', 'base_model.model.base_
  warnings.warn(warn_message)
The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.
</s>ΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌΠΌ