|
import os |
|
import torch |
|
import json |
|
import numpy as np |
|
from PIL import Image as I |
|
from pathlib import Path |
|
from tqdm.auto import tqdm |
|
import matplotlib.pyplot as plt |
|
import torch.nn.functional as F |
|
from datasets import load_dataset |
|
from dataclasses import dataclass |
|
from accelerate import Accelerator |
|
from torchvision import transforms |
|
from skimage.color import rgb2lab, lab2rgb |
|
|
|
|
|
from diffusers import DDPMPipeline, UNet2DModel |
|
from diffusers.optimization import get_cosine_schedule_with_warmup |
|
from eval import evaluate |
|
|
|
|
|
@dataclass |
|
class TrainingConfig: |
|
image_size = 128 |
|
train_batch_size = 8 |
|
eval_batch_size = 8 |
|
num_epochs = 512 |
|
gradient_accumulation_steps = 1 |
|
learning_rate = 3.3e-5 |
|
lr_warmup_steps = 500 |
|
save_image_epochs = 16 |
|
save_model_epochs = 16 |
|
mixed_precision = "fp16" |
|
output_dir = "m1guelpf_nouns" |
|
push_to_hub = False |
|
hub_private_repo = False |
|
overwrite_output_dir = True |
|
seed = 0 |
|
dataset_output_dir = "datasets/" |
|
dataset_name = "m1guelpf/nouns" |
|
model_url = "mrm8488/ddpm-ema-butterflies-128" |
|
model_config = "models/model_config.json" |
|
|
|
|
|
config = TrainingConfig() |
|
|
|
|
|
def save_plot(images): |
|
fig, axs = plt.subplots(1, 4, figsize=(16, 4)) |
|
for i, image in enumerate(images): |
|
axs[i].imshow(image) |
|
axs[i].set_axis_off() |
|
fig.show() |
|
|
|
|
|
def transform_stc(batch): |
|
tfms = transforms.Compose( |
|
[ |
|
transforms.Resize((config.image_size, config.image_size)), |
|
|
|
|
|
|
|
transforms.ToTensor(), |
|
] |
|
) |
|
rgb_images = [ |
|
tfms(I.fromarray(rgb2lab(image.convert("RGB")).astype(np.uint8))) |
|
for image in batch["image"] |
|
] |
|
gray_images = [ |
|
tfms(I.fromarray(rgb2lab(image.convert("L").convert("RGB")).astype(np.uint8))) |
|
for image in batch["image"] |
|
] |
|
return {"rgb": rgb_images, "gray": gray_images} |
|
|
|
|
|
def load_weights(pretrained_model, uninitilized_model): |
|
for name, param in pretrained_model.state_dict().items(): |
|
if param.shape == uninitilized_model.state_dict()[name].shape: |
|
uninitilized_model.state_dict()[name].copy_(param) |
|
|
|
return uninitilized_model |
|
|
|
|
|
def load_pipline(config): |
|
pipeline = DDPMPipeline.from_pretrained(config.model_url) |
|
return pipeline |
|
|
|
|
|
def train_loop( |
|
config, |
|
model, |
|
noise_scheduler, |
|
optimizer, |
|
train_dataloader, |
|
test_dataloader, |
|
lr_scheduler, |
|
): |
|
accelerator = Accelerator( |
|
|
|
gradient_accumulation_steps=config.gradient_accumulation_steps, |
|
log_with="tensorboard", |
|
project_dir=os.path.join(config.output_dir, "logs"), |
|
) |
|
device = accelerator.device |
|
|
|
if accelerator.is_main_process: |
|
if config.output_dir is not None: |
|
os.makedirs(config.output_dir, exist_ok=True) |
|
accelerator.init_trackers("train_example") |
|
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( |
|
model, optimizer, train_dataloader, lr_scheduler |
|
) |
|
|
|
global_step = 0 |
|
|
|
for epoch in range(config.num_epochs): |
|
progress_bar = tqdm( |
|
total=len(train_dataloader), disable=not accelerator.is_local_main_process |
|
) |
|
progress_bar.set_description(f"Epoch {epoch}") |
|
|
|
for step, batch in enumerate(train_dataloader): |
|
rgb_images = batch["rgb"] |
|
rgb_l = rgb_images[:, :1] |
|
rgb_ab = rgb_images[:, 1:] |
|
|
|
|
|
noise = torch.randn(rgb_ab.shape).to(device) |
|
bs = rgb_images.shape[0] |
|
|
|
|
|
timesteps = torch.randint( |
|
0, |
|
noise_scheduler.config.num_train_timesteps, |
|
(bs,), |
|
device=device, |
|
).long() |
|
|
|
noisy_images = torch.cat( |
|
[rgb_l, noise_scheduler.add_noise(rgb_ab, noise, timesteps)], dim=1 |
|
) |
|
|
|
with accelerator.accumulate(model): |
|
|
|
noise_pred = model( |
|
noisy_images, |
|
timesteps, |
|
return_dict=False, |
|
)[0] |
|
|
|
loss = F.mse_loss(noise_pred, noise) |
|
accelerator.backward(loss) |
|
accelerator.clip_grad_norm_(model.parameters(), 1.0) |
|
optimizer.step() |
|
lr_scheduler.step() |
|
optimizer.zero_grad() |
|
|
|
progress_bar.update(1) |
|
logs = { |
|
"loss": loss.detach().item(), |
|
"lr": lr_scheduler.get_last_lr()[0], |
|
"step": global_step, |
|
} |
|
progress_bar.set_postfix(**logs) |
|
accelerator.log(logs, step=global_step) |
|
global_step += 1 |
|
|
|
|
|
if accelerator.is_main_process: |
|
pipeline = DDPMPipeline( |
|
unet=accelerator.unwrap_model(model), scheduler=noise_scheduler |
|
) |
|
|
|
if ( |
|
epoch + 1 |
|
) % config.save_image_epochs == 0 or epoch == config.num_epochs - 1: |
|
for batch in test_dataloader: |
|
eval_images = batch["gray"].to(device) |
|
break |
|
|
|
evaluate(eval_images, config, epoch, pipeline) |
|
|
|
if ( |
|
epoch + 1 |
|
) % config.save_model_epochs == 0 or epoch == config.num_epochs - 1: |
|
pipeline.save_pretrained(config.output_dir) |
|
|
|
|
|
def main(): |
|
dataset = load_dataset(config.dataset_name, split="train") |
|
dataset = dataset.train_test_split(0.02) |
|
dataset.set_transform(transform_stc) |
|
|
|
train_dataloader = torch.utils.data.DataLoader( |
|
dataset["train"], batch_size=config.train_batch_size, shuffle=True |
|
) |
|
test_dataloader = torch.utils.data.DataLoader( |
|
dataset["test"], batch_size=config.train_batch_size, shuffle=False |
|
) |
|
pipeline = load_pipline(config) |
|
pretrained_model = pipeline.unet |
|
|
|
with open(config.model_config) as rstream: |
|
model_config = json.load(rstream) |
|
|
|
model = UNet2DModel.from_config(model_config) |
|
model = load_weights(pretrained_model, model) |
|
noise_scheduler = pipeline.scheduler |
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=config.learning_rate) |
|
lr_scheduler = get_cosine_schedule_with_warmup( |
|
optimizer=optimizer, |
|
num_warmup_steps=config.lr_warmup_steps, |
|
num_training_steps=(len(train_dataloader) * config.num_epochs), |
|
) |
|
|
|
train_loop( |
|
config=config, |
|
model=model, |
|
noise_scheduler=noise_scheduler, |
|
optimizer=optimizer, |
|
train_dataloader=train_dataloader, |
|
test_dataloader=test_dataloader, |
|
lr_scheduler=lr_scheduler, |
|
) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|