--- library_name: transformers base_model: openai/gpt-oss-20b language: [en, ja] pipeline_tag: text-generation tags: [] --- # thinker-mini-v1 **Overview** This is a test model. **Technical notes** - Base: `openai/gpt-oss-20b` (bf16) - Steering: rank-1 delta on Q/K/V across 24 layers (RMSNorm-aware) - Concept vector: `concept_vec_v15k.pt`, shape [24, 6, 2880], gain=0.5 - Checkpoint: single baked weights (no LoRA/adapters; knowledge ≈ base) - Data used: neutral_examples=86376, pairs_used=14394 - Source files: `narukijima/thinker` → `T_instruction_pairs_en.jsonl`, `T_instruction_pairs_ja.jsonl` - Inference: use base tokenizer & chat template **Quick inference** ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch M = "narukijima/thinker-mini-v1" tok = AutoTokenizer.from_pretrained(M, trust_remote_code=True) mdl = AutoModelForCausalLM.from_pretrained( M, torch_dtype=torch.bfloat16, device_map='auto', trust_remote_code=True ) msgs = [{"role":"user","content":"test"}] p = tok.apply_chat_template(msgs, tokenize=False, add_generation_prompt=True) out = mdl.generate(**tok(p, return_tensors='pt').to(mdl.device), max_new_tokens=64, do_sample=True, temperature=0.7) print(tok.decode(out[0], skip_special_tokens=True)) ```