sxyao commited on
Commit
96bba5f
·
verified ·
1 Parent(s): be19dc0

bugfix in loading and data processing

Browse files
config.json CHANGED
@@ -34,7 +34,7 @@
34
  "rope_theta": 500000.0,
35
  "tie_word_embeddings": true,
36
  "torch_dtype": "float32",
37
- "transformers_version": "4.47.1",
38
  "use_cache": true,
39
  "vocab_size": 128256
40
  }
 
34
  "rope_theta": 500000.0,
35
  "tie_word_embeddings": true,
36
  "torch_dtype": "float32",
37
+ "transformers_version": "4.45.2",
38
  "use_cache": true,
39
  "vocab_size": 128256
40
  }
generation_config.json CHANGED
@@ -8,5 +8,5 @@
8
  ],
9
  "temperature": 0.6,
10
  "top_p": 0.9,
11
- "transformers_version": "4.47.1"
12
  }
 
8
  ],
9
  "temperature": 0.6,
10
  "top_p": 0.9,
11
+ "transformers_version": "4.45.2"
12
  }
model-00001-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c3d55e6bbab3c2d2030bda1984d74ec22f23734927494f6780dd2cac85a342a
3
  size 4943274328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d63117c4a0c4f755f31e7b16f956ddfd3d6efc4d1b1084f3da431d5831d47277
3
  size 4943274328
model-00002-of-00002.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d72811afaf35edb59ed41df2e4ae7c481e25bed3a4a5459c41264eaefefcf742
3
  size 1050673280
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:29a18fc6ed6ce7e2ce393b4d692e182e3aae9e85a17d1b62520dc07b25529726
3
  size 1050673280
model.safetensors.index.json CHANGED
@@ -3,7 +3,6 @@
3
  "total_size": 5993930752
4
  },
5
  "weight_map": {
6
- "lm_head.weight": "model-00002-of-00002.safetensors",
7
  "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
  "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
  "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
 
3
  "total_size": 5993930752
4
  },
5
  "weight_map": {
 
6
  "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
7
  "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
8
  "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
tokenizer_config.json CHANGED
@@ -2053,7 +2053,6 @@
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
2056
- "extra_special_tokens": {},
2057
  "model_input_names": [
2058
  "input_ids",
2059
  "attention_mask"
 
2053
  "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
  "clean_up_tokenization_spaces": true,
2055
  "eos_token": "<|eot_id|>",
 
2056
  "model_input_names": [
2057
  "input_ids",
2058
  "attention_mask"
trainer_state.json CHANGED
@@ -1,7 +1,7 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 2.912280701754386,
5
  "eval_steps": 500,
6
  "global_step": 84,
7
  "is_hyper_param_search": false,
@@ -10,124 +10,124 @@
10
  "log_history": [
11
  {
12
  "epoch": 0.17543859649122806,
13
- "grad_norm": 8.686567306518555,
14
  "learning_rate": 1.996992941167792e-05,
15
- "loss": 1.0892,
16
  "step": 5
17
  },
18
  {
19
  "epoch": 0.3508771929824561,
20
- "grad_norm": 2.756136178970337,
21
  "learning_rate": 1.9633708786158803e-05,
22
- "loss": 0.6606,
23
  "step": 10
24
  },
25
  {
26
  "epoch": 0.5263157894736842,
27
- "grad_norm": 2.106504201889038,
28
  "learning_rate": 1.8936326403234125e-05,
29
- "loss": 0.5273,
30
  "step": 15
31
  },
32
  {
33
  "epoch": 0.7017543859649122,
34
- "grad_norm": 1.923587679862976,
35
  "learning_rate": 1.7903926695187595e-05,
36
- "loss": 0.5017,
37
  "step": 20
38
  },
39
  {
40
  "epoch": 0.8771929824561403,
41
- "grad_norm": 1.7514512538909912,
42
  "learning_rate": 1.657521368569064e-05,
43
- "loss": 0.4245,
44
  "step": 25
45
  },
46
  {
47
- "epoch": 1.0350877192982457,
48
- "grad_norm": 1.9517344236373901,
49
  "learning_rate": 1.5000000000000002e-05,
50
- "loss": 0.4167,
51
  "step": 30
52
  },
53
  {
54
- "epoch": 1.2105263157894737,
55
- "grad_norm": 1.7591421604156494,
56
  "learning_rate": 1.3237339420583213e-05,
57
- "loss": 0.3214,
58
  "step": 35
59
  },
60
  {
61
- "epoch": 1.3859649122807016,
62
- "grad_norm": 1.8223237991333008,
63
  "learning_rate": 1.1353312997501313e-05,
64
- "loss": 0.3087,
65
  "step": 40
66
  },
67
  {
68
- "epoch": 1.5614035087719298,
69
- "grad_norm": 1.5914912223815918,
70
  "learning_rate": 9.418551710895243e-06,
71
- "loss": 0.2984,
72
  "step": 45
73
  },
74
  {
75
- "epoch": 1.736842105263158,
76
- "grad_norm": 1.5275812149047852,
77
  "learning_rate": 7.505588559420188e-06,
78
- "loss": 0.2997,
79
  "step": 50
80
  },
81
  {
82
- "epoch": 1.912280701754386,
83
- "grad_norm": 1.5449497699737549,
84
  "learning_rate": 5.686139343187468e-06,
85
- "loss": 0.2863,
86
  "step": 55
87
  },
88
  {
89
- "epoch": 2.0701754385964914,
90
- "grad_norm": 1.4619590044021606,
91
  "learning_rate": 4.028414082972141e-06,
92
- "loss": 0.2595,
93
  "step": 60
94
  },
95
  {
96
- "epoch": 2.245614035087719,
97
- "grad_norm": 1.3976554870605469,
98
  "learning_rate": 2.594559868909956e-06,
99
- "loss": 0.205,
100
  "step": 65
101
  },
102
  {
103
- "epoch": 2.4210526315789473,
104
- "grad_norm": 1.6166017055511475,
105
  "learning_rate": 1.4383310046973365e-06,
106
- "loss": 0.2003,
107
  "step": 70
108
  },
109
  {
110
- "epoch": 2.5964912280701755,
111
- "grad_norm": 1.5817341804504395,
112
  "learning_rate": 6.030737921409169e-07,
113
- "loss": 0.1876,
114
  "step": 75
115
  },
116
  {
117
- "epoch": 2.7719298245614032,
118
- "grad_norm": 1.4169119596481323,
119
  "learning_rate": 1.201015052319099e-07,
120
- "loss": 0.1991,
121
  "step": 80
122
  },
123
  {
124
- "epoch": 2.912280701754386,
125
  "step": 84,
126
- "total_flos": 3.1760499590823936e+16,
127
- "train_loss": 0.37719883024692535,
128
- "train_runtime": 851.0638,
129
- "train_samples_per_second": 6.43,
130
- "train_steps_per_second": 0.099
131
  }
132
  ],
133
  "logging_steps": 5,
@@ -147,7 +147,7 @@
147
  "attributes": {}
148
  }
149
  },
150
- "total_flos": 3.1760499590823936e+16,
151
  "train_batch_size": 4,
152
  "trial_name": null,
153
  "trial_params": null
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 2.9473684210526314,
5
  "eval_steps": 500,
6
  "global_step": 84,
7
  "is_hyper_param_search": false,
 
10
  "log_history": [
11
  {
12
  "epoch": 0.17543859649122806,
13
+ "grad_norm": 8.90099811553955,
14
  "learning_rate": 1.996992941167792e-05,
15
+ "loss": 1.1137,
16
  "step": 5
17
  },
18
  {
19
  "epoch": 0.3508771929824561,
20
+ "grad_norm": 2.5175933837890625,
21
  "learning_rate": 1.9633708786158803e-05,
22
+ "loss": 0.6094,
23
  "step": 10
24
  },
25
  {
26
  "epoch": 0.5263157894736842,
27
+ "grad_norm": 2.091320276260376,
28
  "learning_rate": 1.8936326403234125e-05,
29
+ "loss": 0.5038,
30
  "step": 15
31
  },
32
  {
33
  "epoch": 0.7017543859649122,
34
+ "grad_norm": 1.8124364614486694,
35
  "learning_rate": 1.7903926695187595e-05,
36
+ "loss": 0.484,
37
  "step": 20
38
  },
39
  {
40
  "epoch": 0.8771929824561403,
41
+ "grad_norm": 1.689386248588562,
42
  "learning_rate": 1.657521368569064e-05,
43
+ "loss": 0.4102,
44
  "step": 25
45
  },
46
  {
47
+ "epoch": 1.0526315789473684,
48
+ "grad_norm": 1.687546730041504,
49
  "learning_rate": 1.5000000000000002e-05,
50
+ "loss": 0.3906,
51
  "step": 30
52
  },
53
  {
54
+ "epoch": 1.2280701754385965,
55
+ "grad_norm": 1.8159677982330322,
56
  "learning_rate": 1.3237339420583213e-05,
57
+ "loss": 0.3151,
58
  "step": 35
59
  },
60
  {
61
+ "epoch": 1.4035087719298245,
62
+ "grad_norm": 1.6340556144714355,
63
  "learning_rate": 1.1353312997501313e-05,
64
+ "loss": 0.2973,
65
  "step": 40
66
  },
67
  {
68
+ "epoch": 1.5789473684210527,
69
+ "grad_norm": 1.5886197090148926,
70
  "learning_rate": 9.418551710895243e-06,
71
+ "loss": 0.2915,
72
  "step": 45
73
  },
74
  {
75
+ "epoch": 1.7543859649122808,
76
+ "grad_norm": 1.5932583808898926,
77
  "learning_rate": 7.505588559420188e-06,
78
+ "loss": 0.2892,
79
  "step": 50
80
  },
81
  {
82
+ "epoch": 1.9298245614035088,
83
+ "grad_norm": 1.5423833131790161,
84
  "learning_rate": 5.686139343187468e-06,
85
+ "loss": 0.2769,
86
  "step": 55
87
  },
88
  {
89
+ "epoch": 2.1052631578947367,
90
+ "grad_norm": 1.4709863662719727,
91
  "learning_rate": 4.028414082972141e-06,
92
+ "loss": 0.2353,
93
  "step": 60
94
  },
95
  {
96
+ "epoch": 2.280701754385965,
97
+ "grad_norm": 1.43242347240448,
98
  "learning_rate": 2.594559868909956e-06,
99
+ "loss": 0.1994,
100
  "step": 65
101
  },
102
  {
103
+ "epoch": 2.456140350877193,
104
+ "grad_norm": 1.5272055864334106,
105
  "learning_rate": 1.4383310046973365e-06,
106
+ "loss": 0.1864,
107
  "step": 70
108
  },
109
  {
110
+ "epoch": 2.6315789473684212,
111
+ "grad_norm": 1.5854390859603882,
112
  "learning_rate": 6.030737921409169e-07,
113
+ "loss": 0.187,
114
  "step": 75
115
  },
116
  {
117
+ "epoch": 2.807017543859649,
118
+ "grad_norm": 1.4928103685379028,
119
  "learning_rate": 1.201015052319099e-07,
120
+ "loss": 0.1925,
121
  "step": 80
122
  },
123
  {
124
+ "epoch": 2.9473684210526314,
125
  "step": 84,
126
+ "total_flos": 3.214315621240013e+16,
127
+ "train_loss": 0.3641331955080941,
128
+ "train_runtime": 776.361,
129
+ "train_samples_per_second": 7.048,
130
+ "train_steps_per_second": 0.108
131
  }
132
  ],
133
  "logging_steps": 5,
 
147
  "attributes": {}
148
  }
149
  },
150
+ "total_flos": 3.214315621240013e+16,
151
  "train_batch_size": 4,
152
  "trial_name": null,
153
  "trial_params": null
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:59f37abe75e212d61bc93af6a7d30d384fb5e3a575bc779bf07f5bada58d559f
3
- size 5624
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f97226cf1064ea048cf3dca3c9d390f0d7afd696e6425ee860d6d6fa14058046
3
+ size 5496