bugfix in loading and data processing
Browse files- config.json +1 -1
- generation_config.json +1 -1
- model-00001-of-00002.safetensors +1 -1
- model-00002-of-00002.safetensors +1 -1
- model.safetensors.index.json +0 -1
- tokenizer_config.json +0 -1
- trainer_state.json +51 -51
- training_args.bin +2 -2
config.json
CHANGED
@@ -34,7 +34,7 @@
|
|
34 |
"rope_theta": 500000.0,
|
35 |
"tie_word_embeddings": true,
|
36 |
"torch_dtype": "float32",
|
37 |
-
"transformers_version": "4.
|
38 |
"use_cache": true,
|
39 |
"vocab_size": 128256
|
40 |
}
|
|
|
34 |
"rope_theta": 500000.0,
|
35 |
"tie_word_embeddings": true,
|
36 |
"torch_dtype": "float32",
|
37 |
+
"transformers_version": "4.45.2",
|
38 |
"use_cache": true,
|
39 |
"vocab_size": 128256
|
40 |
}
|
generation_config.json
CHANGED
@@ -8,5 +8,5 @@
|
|
8 |
],
|
9 |
"temperature": 0.6,
|
10 |
"top_p": 0.9,
|
11 |
-
"transformers_version": "4.
|
12 |
}
|
|
|
8 |
],
|
9 |
"temperature": 0.6,
|
10 |
"top_p": 0.9,
|
11 |
+
"transformers_version": "4.45.2"
|
12 |
}
|
model-00001-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4943274328
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d63117c4a0c4f755f31e7b16f956ddfd3d6efc4d1b1084f3da431d5831d47277
|
3 |
size 4943274328
|
model-00002-of-00002.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 1050673280
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:29a18fc6ed6ce7e2ce393b4d692e182e3aae9e85a17d1b62520dc07b25529726
|
3 |
size 1050673280
|
model.safetensors.index.json
CHANGED
@@ -3,7 +3,6 @@
|
|
3 |
"total_size": 5993930752
|
4 |
},
|
5 |
"weight_map": {
|
6 |
-
"lm_head.weight": "model-00002-of-00002.safetensors",
|
7 |
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
8 |
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
9 |
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
|
|
3 |
"total_size": 5993930752
|
4 |
},
|
5 |
"weight_map": {
|
|
|
6 |
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
7 |
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
8 |
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
tokenizer_config.json
CHANGED
@@ -2053,7 +2053,6 @@
|
|
2053 |
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2054 |
"clean_up_tokenization_spaces": true,
|
2055 |
"eos_token": "<|eot_id|>",
|
2056 |
-
"extra_special_tokens": {},
|
2057 |
"model_input_names": [
|
2058 |
"input_ids",
|
2059 |
"attention_mask"
|
|
|
2053 |
"chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- if strftime_now is defined %}\n {%- set date_string = strftime_now(\"%d %b %Y\") %}\n {%- else %}\n {%- set date_string = \"26 Jul 2024\" %}\n {%- endif %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {{- \"<|eot_id|>\" }}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
|
2054 |
"clean_up_tokenization_spaces": true,
|
2055 |
"eos_token": "<|eot_id|>",
|
|
|
2056 |
"model_input_names": [
|
2057 |
"input_ids",
|
2058 |
"attention_mask"
|
trainer_state.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
-
"epoch": 2.
|
5 |
"eval_steps": 500,
|
6 |
"global_step": 84,
|
7 |
"is_hyper_param_search": false,
|
@@ -10,124 +10,124 @@
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.17543859649122806,
|
13 |
-
"grad_norm": 8.
|
14 |
"learning_rate": 1.996992941167792e-05,
|
15 |
-
"loss": 1.
|
16 |
"step": 5
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.3508771929824561,
|
20 |
-
"grad_norm": 2.
|
21 |
"learning_rate": 1.9633708786158803e-05,
|
22 |
-
"loss": 0.
|
23 |
"step": 10
|
24 |
},
|
25 |
{
|
26 |
"epoch": 0.5263157894736842,
|
27 |
-
"grad_norm": 2.
|
28 |
"learning_rate": 1.8936326403234125e-05,
|
29 |
-
"loss": 0.
|
30 |
"step": 15
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.7017543859649122,
|
34 |
-
"grad_norm": 1.
|
35 |
"learning_rate": 1.7903926695187595e-05,
|
36 |
-
"loss": 0.
|
37 |
"step": 20
|
38 |
},
|
39 |
{
|
40 |
"epoch": 0.8771929824561403,
|
41 |
-
"grad_norm": 1.
|
42 |
"learning_rate": 1.657521368569064e-05,
|
43 |
-
"loss": 0.
|
44 |
"step": 25
|
45 |
},
|
46 |
{
|
47 |
-
"epoch": 1.
|
48 |
-
"grad_norm": 1.
|
49 |
"learning_rate": 1.5000000000000002e-05,
|
50 |
-
"loss": 0.
|
51 |
"step": 30
|
52 |
},
|
53 |
{
|
54 |
-
"epoch": 1.
|
55 |
-
"grad_norm": 1.
|
56 |
"learning_rate": 1.3237339420583213e-05,
|
57 |
-
"loss": 0.
|
58 |
"step": 35
|
59 |
},
|
60 |
{
|
61 |
-
"epoch": 1.
|
62 |
-
"grad_norm": 1.
|
63 |
"learning_rate": 1.1353312997501313e-05,
|
64 |
-
"loss": 0.
|
65 |
"step": 40
|
66 |
},
|
67 |
{
|
68 |
-
"epoch": 1.
|
69 |
-
"grad_norm": 1.
|
70 |
"learning_rate": 9.418551710895243e-06,
|
71 |
-
"loss": 0.
|
72 |
"step": 45
|
73 |
},
|
74 |
{
|
75 |
-
"epoch": 1.
|
76 |
-
"grad_norm": 1.
|
77 |
"learning_rate": 7.505588559420188e-06,
|
78 |
-
"loss": 0.
|
79 |
"step": 50
|
80 |
},
|
81 |
{
|
82 |
-
"epoch": 1.
|
83 |
-
"grad_norm": 1.
|
84 |
"learning_rate": 5.686139343187468e-06,
|
85 |
-
"loss": 0.
|
86 |
"step": 55
|
87 |
},
|
88 |
{
|
89 |
-
"epoch": 2.
|
90 |
-
"grad_norm": 1.
|
91 |
"learning_rate": 4.028414082972141e-06,
|
92 |
-
"loss": 0.
|
93 |
"step": 60
|
94 |
},
|
95 |
{
|
96 |
-
"epoch": 2.
|
97 |
-
"grad_norm": 1.
|
98 |
"learning_rate": 2.594559868909956e-06,
|
99 |
-
"loss": 0.
|
100 |
"step": 65
|
101 |
},
|
102 |
{
|
103 |
-
"epoch": 2.
|
104 |
-
"grad_norm": 1.
|
105 |
"learning_rate": 1.4383310046973365e-06,
|
106 |
-
"loss": 0.
|
107 |
"step": 70
|
108 |
},
|
109 |
{
|
110 |
-
"epoch": 2.
|
111 |
-
"grad_norm": 1.
|
112 |
"learning_rate": 6.030737921409169e-07,
|
113 |
-
"loss": 0.
|
114 |
"step": 75
|
115 |
},
|
116 |
{
|
117 |
-
"epoch": 2.
|
118 |
-
"grad_norm": 1.
|
119 |
"learning_rate": 1.201015052319099e-07,
|
120 |
-
"loss": 0.
|
121 |
"step": 80
|
122 |
},
|
123 |
{
|
124 |
-
"epoch": 2.
|
125 |
"step": 84,
|
126 |
-
"total_flos": 3.
|
127 |
-
"train_loss": 0.
|
128 |
-
"train_runtime":
|
129 |
-
"train_samples_per_second":
|
130 |
-
"train_steps_per_second": 0.
|
131 |
}
|
132 |
],
|
133 |
"logging_steps": 5,
|
@@ -147,7 +147,7 @@
|
|
147 |
"attributes": {}
|
148 |
}
|
149 |
},
|
150 |
-
"total_flos": 3.
|
151 |
"train_batch_size": 4,
|
152 |
"trial_name": null,
|
153 |
"trial_params": null
|
|
|
1 |
{
|
2 |
"best_metric": null,
|
3 |
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9473684210526314,
|
5 |
"eval_steps": 500,
|
6 |
"global_step": 84,
|
7 |
"is_hyper_param_search": false,
|
|
|
10 |
"log_history": [
|
11 |
{
|
12 |
"epoch": 0.17543859649122806,
|
13 |
+
"grad_norm": 8.90099811553955,
|
14 |
"learning_rate": 1.996992941167792e-05,
|
15 |
+
"loss": 1.1137,
|
16 |
"step": 5
|
17 |
},
|
18 |
{
|
19 |
"epoch": 0.3508771929824561,
|
20 |
+
"grad_norm": 2.5175933837890625,
|
21 |
"learning_rate": 1.9633708786158803e-05,
|
22 |
+
"loss": 0.6094,
|
23 |
"step": 10
|
24 |
},
|
25 |
{
|
26 |
"epoch": 0.5263157894736842,
|
27 |
+
"grad_norm": 2.091320276260376,
|
28 |
"learning_rate": 1.8936326403234125e-05,
|
29 |
+
"loss": 0.5038,
|
30 |
"step": 15
|
31 |
},
|
32 |
{
|
33 |
"epoch": 0.7017543859649122,
|
34 |
+
"grad_norm": 1.8124364614486694,
|
35 |
"learning_rate": 1.7903926695187595e-05,
|
36 |
+
"loss": 0.484,
|
37 |
"step": 20
|
38 |
},
|
39 |
{
|
40 |
"epoch": 0.8771929824561403,
|
41 |
+
"grad_norm": 1.689386248588562,
|
42 |
"learning_rate": 1.657521368569064e-05,
|
43 |
+
"loss": 0.4102,
|
44 |
"step": 25
|
45 |
},
|
46 |
{
|
47 |
+
"epoch": 1.0526315789473684,
|
48 |
+
"grad_norm": 1.687546730041504,
|
49 |
"learning_rate": 1.5000000000000002e-05,
|
50 |
+
"loss": 0.3906,
|
51 |
"step": 30
|
52 |
},
|
53 |
{
|
54 |
+
"epoch": 1.2280701754385965,
|
55 |
+
"grad_norm": 1.8159677982330322,
|
56 |
"learning_rate": 1.3237339420583213e-05,
|
57 |
+
"loss": 0.3151,
|
58 |
"step": 35
|
59 |
},
|
60 |
{
|
61 |
+
"epoch": 1.4035087719298245,
|
62 |
+
"grad_norm": 1.6340556144714355,
|
63 |
"learning_rate": 1.1353312997501313e-05,
|
64 |
+
"loss": 0.2973,
|
65 |
"step": 40
|
66 |
},
|
67 |
{
|
68 |
+
"epoch": 1.5789473684210527,
|
69 |
+
"grad_norm": 1.5886197090148926,
|
70 |
"learning_rate": 9.418551710895243e-06,
|
71 |
+
"loss": 0.2915,
|
72 |
"step": 45
|
73 |
},
|
74 |
{
|
75 |
+
"epoch": 1.7543859649122808,
|
76 |
+
"grad_norm": 1.5932583808898926,
|
77 |
"learning_rate": 7.505588559420188e-06,
|
78 |
+
"loss": 0.2892,
|
79 |
"step": 50
|
80 |
},
|
81 |
{
|
82 |
+
"epoch": 1.9298245614035088,
|
83 |
+
"grad_norm": 1.5423833131790161,
|
84 |
"learning_rate": 5.686139343187468e-06,
|
85 |
+
"loss": 0.2769,
|
86 |
"step": 55
|
87 |
},
|
88 |
{
|
89 |
+
"epoch": 2.1052631578947367,
|
90 |
+
"grad_norm": 1.4709863662719727,
|
91 |
"learning_rate": 4.028414082972141e-06,
|
92 |
+
"loss": 0.2353,
|
93 |
"step": 60
|
94 |
},
|
95 |
{
|
96 |
+
"epoch": 2.280701754385965,
|
97 |
+
"grad_norm": 1.43242347240448,
|
98 |
"learning_rate": 2.594559868909956e-06,
|
99 |
+
"loss": 0.1994,
|
100 |
"step": 65
|
101 |
},
|
102 |
{
|
103 |
+
"epoch": 2.456140350877193,
|
104 |
+
"grad_norm": 1.5272055864334106,
|
105 |
"learning_rate": 1.4383310046973365e-06,
|
106 |
+
"loss": 0.1864,
|
107 |
"step": 70
|
108 |
},
|
109 |
{
|
110 |
+
"epoch": 2.6315789473684212,
|
111 |
+
"grad_norm": 1.5854390859603882,
|
112 |
"learning_rate": 6.030737921409169e-07,
|
113 |
+
"loss": 0.187,
|
114 |
"step": 75
|
115 |
},
|
116 |
{
|
117 |
+
"epoch": 2.807017543859649,
|
118 |
+
"grad_norm": 1.4928103685379028,
|
119 |
"learning_rate": 1.201015052319099e-07,
|
120 |
+
"loss": 0.1925,
|
121 |
"step": 80
|
122 |
},
|
123 |
{
|
124 |
+
"epoch": 2.9473684210526314,
|
125 |
"step": 84,
|
126 |
+
"total_flos": 3.214315621240013e+16,
|
127 |
+
"train_loss": 0.3641331955080941,
|
128 |
+
"train_runtime": 776.361,
|
129 |
+
"train_samples_per_second": 7.048,
|
130 |
+
"train_steps_per_second": 0.108
|
131 |
}
|
132 |
],
|
133 |
"logging_steps": 5,
|
|
|
147 |
"attributes": {}
|
148 |
}
|
149 |
},
|
150 |
+
"total_flos": 3.214315621240013e+16,
|
151 |
"train_batch_size": 4,
|
152 |
"trial_name": null,
|
153 |
"trial_params": null
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f97226cf1064ea048cf3dca3c9d390f0d7afd696e6425ee860d6d6fa14058046
|
3 |
+
size 5496
|