lbourdois commited on
Commit
b476c18
·
verified ·
1 Parent(s): a9e4aca

Improve language tag

Browse files

Hi! As the model is multilingual, this is a PR to add other languages than English to the language tag to improve the referencing. Note that 29 languages are announced in the README, but only 13 are explicitly listed. I was therefore only able to add these 13 languages.

Files changed (1) hide show
  1. README.md +160 -146
README.md CHANGED
@@ -1,147 +1,161 @@
1
- ---
2
- library_name: peft
3
- license: apache-2.0
4
- base_model: Qwen/Qwen2.5-1.5B-Instruct
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- model-index:
9
- - name: 0b37f034-244e-487b-a3c3-a2968b439d14
10
- results: []
11
- ---
12
-
13
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
- should probably proofread and complete it, then remove this comment. -->
15
-
16
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
- <details><summary>See axolotl config</summary>
18
-
19
- axolotl version: `0.4.1`
20
- ```yaml
21
- adapter: lora
22
- base_model: Qwen/Qwen2.5-1.5B-Instruct
23
- bf16: auto
24
- chat_template: llama3
25
- dataset_prepared_path: null
26
- datasets:
27
- - data_files:
28
- - e3b8f9f321c1a990_train_data.json
29
- ds_type: json
30
- format: custom
31
- path: /workspace/input_data/e3b8f9f321c1a990_train_data.json
32
- type:
33
- field_input: original-context
34
- field_instruction: original-instruction
35
- field_output: original-response
36
- format: '{instruction} {input}'
37
- no_input_format: '{instruction}'
38
- system_format: '{system}'
39
- system_prompt: ''
40
- debug: null
41
- deepspeed: null
42
- early_stopping_patience: null
43
- eval_max_new_tokens: 128
44
- eval_table_size: null
45
- evals_per_epoch: 1
46
- flash_attention: false
47
- fp16: null
48
- fsdp: null
49
- fsdp_config: null
50
- gradient_accumulation_steps: 1
51
- gradient_checkpointing: true
52
- group_by_length: false
53
- hub_model_id: nblinh63/0b37f034-244e-487b-a3c3-a2968b439d14
54
- hub_repo: null
55
- hub_strategy: end
56
- hub_token: null
57
- learning_rate: 0.0002
58
- load_in_4bit: true
59
- load_in_8bit: true
60
- local_rank: null
61
- logging_steps: 1
62
- lora_alpha: 32
63
- lora_dropout: 0.05
64
- lora_fan_in_fan_out: null
65
- lora_model_dir: null
66
- lora_r: 16
67
- lora_target_linear: true
68
- lr_scheduler: cosine
69
- max_steps: 10
70
- micro_batch_size: 1
71
- mlflow_experiment_name: /tmp/e3b8f9f321c1a990_train_data.json
72
- model_type: AutoModelForCausalLM
73
- num_epochs: 1
74
- optimizer: adamw_bnb_8bit
75
- output_dir: miner_id_24
76
- pad_to_sequence_len: true
77
- resume_from_checkpoint: null
78
- s2_attention: null
79
- sample_packing: false
80
- saves_per_epoch: 1
81
- sequence_len: 2048
82
- strict: false
83
- tf32: false
84
- tokenizer_type: AutoTokenizer
85
- train_on_inputs: false
86
- trust_remote_code: true
87
- val_set_size: 0.05
88
- wandb_entity: null
89
- wandb_mode: online
90
- wandb_name: 0b37f034-244e-487b-a3c3-a2968b439d14
91
- wandb_project: Gradients-On-Demand
92
- wandb_run: your_name
93
- wandb_runid: 0b37f034-244e-487b-a3c3-a2968b439d14
94
- warmup_steps: 10
95
- weight_decay: 0.0
96
- xformers_attention: true
97
-
98
- ```
99
-
100
- </details><br>
101
-
102
- # 0b37f034-244e-487b-a3c3-a2968b439d14
103
-
104
- This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
105
- It achieves the following results on the evaluation set:
106
- - Loss: 2.8734
107
-
108
- ## Model description
109
-
110
- More information needed
111
-
112
- ## Intended uses & limitations
113
-
114
- More information needed
115
-
116
- ## Training and evaluation data
117
-
118
- More information needed
119
-
120
- ## Training procedure
121
-
122
- ### Training hyperparameters
123
-
124
- The following hyperparameters were used during training:
125
- - learning_rate: 0.0002
126
- - train_batch_size: 1
127
- - eval_batch_size: 1
128
- - seed: 42
129
- - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
130
- - lr_scheduler_type: cosine
131
- - lr_scheduler_warmup_steps: 10
132
- - training_steps: 10
133
-
134
- ### Training results
135
-
136
- | Training Loss | Epoch | Step | Validation Loss |
137
- |:-------------:|:------:|:----:|:---------------:|
138
- | 2.2179 | 0.0007 | 10 | 2.8734 |
139
-
140
-
141
- ### Framework versions
142
-
143
- - PEFT 0.13.2
144
- - Transformers 4.46.0
145
- - Pytorch 2.5.0+cu124
146
- - Datasets 3.0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  - Tokenizers 0.20.1
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ language:
9
+ - zho
10
+ - eng
11
+ - fra
12
+ - spa
13
+ - por
14
+ - deu
15
+ - ita
16
+ - rus
17
+ - jpn
18
+ - kor
19
+ - vie
20
+ - tha
21
+ - ara
22
+ model-index:
23
+ - name: 0b37f034-244e-487b-a3c3-a2968b439d14
24
+ results: []
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
31
+ <details><summary>See axolotl config</summary>
32
+
33
+ axolotl version: `0.4.1`
34
+ ```yaml
35
+ adapter: lora
36
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
37
+ bf16: auto
38
+ chat_template: llama3
39
+ dataset_prepared_path: null
40
+ datasets:
41
+ - data_files:
42
+ - e3b8f9f321c1a990_train_data.json
43
+ ds_type: json
44
+ format: custom
45
+ path: /workspace/input_data/e3b8f9f321c1a990_train_data.json
46
+ type:
47
+ field_input: original-context
48
+ field_instruction: original-instruction
49
+ field_output: original-response
50
+ format: '{instruction} {input}'
51
+ no_input_format: '{instruction}'
52
+ system_format: '{system}'
53
+ system_prompt: ''
54
+ debug: null
55
+ deepspeed: null
56
+ early_stopping_patience: null
57
+ eval_max_new_tokens: 128
58
+ eval_table_size: null
59
+ evals_per_epoch: 1
60
+ flash_attention: false
61
+ fp16: null
62
+ fsdp: null
63
+ fsdp_config: null
64
+ gradient_accumulation_steps: 1
65
+ gradient_checkpointing: true
66
+ group_by_length: false
67
+ hub_model_id: nblinh63/0b37f034-244e-487b-a3c3-a2968b439d14
68
+ hub_repo: null
69
+ hub_strategy: end
70
+ hub_token: null
71
+ learning_rate: 0.0002
72
+ load_in_4bit: true
73
+ load_in_8bit: true
74
+ local_rank: null
75
+ logging_steps: 1
76
+ lora_alpha: 32
77
+ lora_dropout: 0.05
78
+ lora_fan_in_fan_out: null
79
+ lora_model_dir: null
80
+ lora_r: 16
81
+ lora_target_linear: true
82
+ lr_scheduler: cosine
83
+ max_steps: 10
84
+ micro_batch_size: 1
85
+ mlflow_experiment_name: /tmp/e3b8f9f321c1a990_train_data.json
86
+ model_type: AutoModelForCausalLM
87
+ num_epochs: 1
88
+ optimizer: adamw_bnb_8bit
89
+ output_dir: miner_id_24
90
+ pad_to_sequence_len: true
91
+ resume_from_checkpoint: null
92
+ s2_attention: null
93
+ sample_packing: false
94
+ saves_per_epoch: 1
95
+ sequence_len: 2048
96
+ strict: false
97
+ tf32: false
98
+ tokenizer_type: AutoTokenizer
99
+ train_on_inputs: false
100
+ trust_remote_code: true
101
+ val_set_size: 0.05
102
+ wandb_entity: null
103
+ wandb_mode: online
104
+ wandb_name: 0b37f034-244e-487b-a3c3-a2968b439d14
105
+ wandb_project: Gradients-On-Demand
106
+ wandb_run: your_name
107
+ wandb_runid: 0b37f034-244e-487b-a3c3-a2968b439d14
108
+ warmup_steps: 10
109
+ weight_decay: 0.0
110
+ xformers_attention: true
111
+
112
+ ```
113
+
114
+ </details><br>
115
+
116
+ # 0b37f034-244e-487b-a3c3-a2968b439d14
117
+
118
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) on the None dataset.
119
+ It achieves the following results on the evaluation set:
120
+ - Loss: 2.8734
121
+
122
+ ## Model description
123
+
124
+ More information needed
125
+
126
+ ## Intended uses & limitations
127
+
128
+ More information needed
129
+
130
+ ## Training and evaluation data
131
+
132
+ More information needed
133
+
134
+ ## Training procedure
135
+
136
+ ### Training hyperparameters
137
+
138
+ The following hyperparameters were used during training:
139
+ - learning_rate: 0.0002
140
+ - train_batch_size: 1
141
+ - eval_batch_size: 1
142
+ - seed: 42
143
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
144
+ - lr_scheduler_type: cosine
145
+ - lr_scheduler_warmup_steps: 10
146
+ - training_steps: 10
147
+
148
+ ### Training results
149
+
150
+ | Training Loss | Epoch | Step | Validation Loss |
151
+ |:-------------:|:------:|:----:|:---------------:|
152
+ | 2.2179 | 0.0007 | 10 | 2.8734 |
153
+
154
+
155
+ ### Framework versions
156
+
157
+ - PEFT 0.13.2
158
+ - Transformers 4.46.0
159
+ - Pytorch 2.5.0+cu124
160
+ - Datasets 3.0.1
161
  - Tokenizers 0.20.1