Upload convert_to_long.ipynb
Browse files- convert_to_long.ipynb +1091 -0
convert_to_long.ipynb
ADDED
@@ -0,0 +1,1091 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "426ead53-211f-4f07-b327-ce1f75f923e0",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [
|
11 |
+
{
|
12 |
+
"name": "stdout",
|
13 |
+
"output_type": "stream",
|
14 |
+
"text": [
|
15 |
+
"Collecting transformers\n",
|
16 |
+
" Downloading transformers-4.41.2-py3-none-any.whl (9.1 MB)\n",
|
17 |
+
"\u001b[K |████████████████████████████████| 9.1 MB 26.1 MB/s eta 0:00:01\n",
|
18 |
+
"\u001b[?25hCollecting sentencepiece\n",
|
19 |
+
" Downloading sentencepiece-0.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\n",
|
20 |
+
"\u001b[K |████████████████████████████████| 1.3 MB 94.2 MB/s eta 0:00:01\n",
|
21 |
+
"\u001b[?25hCollecting filelock\n",
|
22 |
+
" Downloading filelock-3.15.4-py3-none-any.whl (16 kB)\n",
|
23 |
+
"Collecting numpy>=1.17\n",
|
24 |
+
" Downloading numpy-2.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.3 MB)\n",
|
25 |
+
"\u001b[K |████████████████████████████████| 19.3 MB 97.7 MB/s eta 0:00:01\n",
|
26 |
+
"\u001b[?25hRequirement already satisfied: pyyaml>=5.1 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (6.0.1)\n",
|
27 |
+
"Collecting safetensors>=0.4.1\n",
|
28 |
+
" Downloading safetensors-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.2 MB)\n",
|
29 |
+
"\u001b[K |████████████████████████████████| 1.2 MB 87.6 MB/s eta 0:00:01\n",
|
30 |
+
"\u001b[?25hCollecting tokenizers<0.20,>=0.19\n",
|
31 |
+
" Downloading tokenizers-0.19.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.6 MB)\n",
|
32 |
+
"\u001b[K |████████████████████████████████| 3.6 MB 111.0 MB/s eta 0:00:01\n",
|
33 |
+
"\u001b[?25hCollecting regex!=2019.12.17\n",
|
34 |
+
" Downloading regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774 kB)\n",
|
35 |
+
"\u001b[K |████████████████████████████████| 774 kB 96.6 MB/s eta 0:00:01\n",
|
36 |
+
"\u001b[?25hRequirement already satisfied: packaging>=20.0 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (24.1)\n",
|
37 |
+
"Collecting huggingface-hub<1.0,>=0.23.0\n",
|
38 |
+
" Downloading huggingface_hub-0.23.4-py3-none-any.whl (402 kB)\n",
|
39 |
+
"\u001b[K |████████████████████████████████| 402 kB 118.3 MB/s eta 0:00:01\n",
|
40 |
+
"\u001b[?25hRequirement already satisfied: tqdm>=4.27 in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (4.61.2)\n",
|
41 |
+
"Requirement already satisfied: requests in /home/user/miniconda/lib/python3.9/site-packages (from transformers) (2.32.3)\n",
|
42 |
+
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /home/user/miniconda/lib/python3.9/site-packages (from huggingface-hub<1.0,>=0.23.0->transformers) (4.12.2)\n",
|
43 |
+
"Collecting fsspec>=2023.5.0\n",
|
44 |
+
" Downloading fsspec-2024.6.0-py3-none-any.whl (176 kB)\n",
|
45 |
+
"\u001b[K |████████████████████████████████| 176 kB 127.1 MB/s eta 0:00:01\n",
|
46 |
+
"\u001b[?25hRequirement already satisfied: urllib3<3,>=1.21.1 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (1.26.6)\n",
|
47 |
+
"Requirement already satisfied: charset-normalizer<4,>=2 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (3.3.2)\n",
|
48 |
+
"Requirement already satisfied: idna<4,>=2.5 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (2.10)\n",
|
49 |
+
"Requirement already satisfied: certifi>=2017.4.17 in /home/user/miniconda/lib/python3.9/site-packages (from requests->transformers) (2021.5.30)\n",
|
50 |
+
"Installing collected packages: fsspec, filelock, huggingface-hub, tokenizers, safetensors, regex, numpy, transformers, sentencepiece\n",
|
51 |
+
"Successfully installed filelock-3.15.4 fsspec-2024.6.0 huggingface-hub-0.23.4 numpy-2.0.0 regex-2024.5.15 safetensors-0.4.3 sentencepiece-0.2.0 tokenizers-0.19.1 transformers-4.41.2\n"
|
52 |
+
]
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"source": [
|
56 |
+
"!pip install transformers sentencepiece"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 1,
|
62 |
+
"id": "5bee7472-9458-428b-b315-2a6579ecbcd7",
|
63 |
+
"metadata": {
|
64 |
+
"tags": []
|
65 |
+
},
|
66 |
+
"outputs": [
|
67 |
+
{
|
68 |
+
"data": {
|
69 |
+
"application/json": {
|
70 |
+
"ascii": false,
|
71 |
+
"bar_format": null,
|
72 |
+
"colour": null,
|
73 |
+
"elapsed": 0.0051538944244384766,
|
74 |
+
"initial": 0,
|
75 |
+
"n": 0,
|
76 |
+
"ncols": null,
|
77 |
+
"nrows": null,
|
78 |
+
"postfix": null,
|
79 |
+
"prefix": "config.json",
|
80 |
+
"rate": null,
|
81 |
+
"total": 615,
|
82 |
+
"unit": "B",
|
83 |
+
"unit_divisor": 1000,
|
84 |
+
"unit_scale": true
|
85 |
+
},
|
86 |
+
"application/vnd.jupyter.widget-view+json": {
|
87 |
+
"model_id": "b071a2288c7848b9a86e9c12e7c5105c",
|
88 |
+
"version_major": 2,
|
89 |
+
"version_minor": 0
|
90 |
+
},
|
91 |
+
"text/plain": [
|
92 |
+
"config.json: 0%| | 0.00/615 [00:00<?, ?B/s]"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"metadata": {},
|
96 |
+
"output_type": "display_data"
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"data": {
|
100 |
+
"application/json": {
|
101 |
+
"ascii": false,
|
102 |
+
"bar_format": null,
|
103 |
+
"colour": null,
|
104 |
+
"elapsed": 0.004002094268798828,
|
105 |
+
"initial": 0,
|
106 |
+
"n": 0,
|
107 |
+
"ncols": null,
|
108 |
+
"nrows": null,
|
109 |
+
"postfix": null,
|
110 |
+
"prefix": "model.safetensors",
|
111 |
+
"rate": null,
|
112 |
+
"total": 1115567652,
|
113 |
+
"unit": "B",
|
114 |
+
"unit_divisor": 1000,
|
115 |
+
"unit_scale": true
|
116 |
+
},
|
117 |
+
"application/vnd.jupyter.widget-view+json": {
|
118 |
+
"model_id": "524b814ec5164db5a86203078b303a9c",
|
119 |
+
"version_major": 2,
|
120 |
+
"version_minor": 0
|
121 |
+
},
|
122 |
+
"text/plain": [
|
123 |
+
"model.safetensors: 0%| | 0.00/1.12G [00:00<?, ?B/s]"
|
124 |
+
]
|
125 |
+
},
|
126 |
+
"metadata": {},
|
127 |
+
"output_type": "display_data"
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"from transformers import AutoModel\n",
|
132 |
+
"\n",
|
133 |
+
"xlm_base = AutoModel.from_pretrained(\"xlm-roberta-base\")"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": 2,
|
139 |
+
"id": "3c5bfded-aa37-4c1b-8fe8-c6fe64e184e7",
|
140 |
+
"metadata": {
|
141 |
+
"tags": []
|
142 |
+
},
|
143 |
+
"outputs": [
|
144 |
+
{
|
145 |
+
"data": {
|
146 |
+
"application/json": {
|
147 |
+
"ascii": false,
|
148 |
+
"bar_format": null,
|
149 |
+
"colour": null,
|
150 |
+
"elapsed": 0.0036783218383789062,
|
151 |
+
"initial": 0,
|
152 |
+
"n": 0,
|
153 |
+
"ncols": null,
|
154 |
+
"nrows": null,
|
155 |
+
"postfix": null,
|
156 |
+
"prefix": "config.json",
|
157 |
+
"rate": null,
|
158 |
+
"total": 616,
|
159 |
+
"unit": "B",
|
160 |
+
"unit_divisor": 1000,
|
161 |
+
"unit_scale": true
|
162 |
+
},
|
163 |
+
"application/vnd.jupyter.widget-view+json": {
|
164 |
+
"model_id": "67617bf347cf46bb95d1559e756b3e64",
|
165 |
+
"version_major": 2,
|
166 |
+
"version_minor": 0
|
167 |
+
},
|
168 |
+
"text/plain": [
|
169 |
+
"config.json: 0%| | 0.00/616 [00:00<?, ?B/s]"
|
170 |
+
]
|
171 |
+
},
|
172 |
+
"metadata": {},
|
173 |
+
"output_type": "display_data"
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"data": {
|
177 |
+
"application/json": {
|
178 |
+
"ascii": false,
|
179 |
+
"bar_format": null,
|
180 |
+
"colour": null,
|
181 |
+
"elapsed": 0.00390625,
|
182 |
+
"initial": 0,
|
183 |
+
"n": 0,
|
184 |
+
"ncols": null,
|
185 |
+
"nrows": null,
|
186 |
+
"postfix": null,
|
187 |
+
"prefix": "model.safetensors",
|
188 |
+
"rate": null,
|
189 |
+
"total": 2244817354,
|
190 |
+
"unit": "B",
|
191 |
+
"unit_divisor": 1000,
|
192 |
+
"unit_scale": true
|
193 |
+
},
|
194 |
+
"application/vnd.jupyter.widget-view+json": {
|
195 |
+
"model_id": "7cd0c7418dc4483083054e541b6dd1ac",
|
196 |
+
"version_major": 2,
|
197 |
+
"version_minor": 0
|
198 |
+
},
|
199 |
+
"text/plain": [
|
200 |
+
"model.safetensors: 0%| | 0.00/2.24G [00:00<?, ?B/s]"
|
201 |
+
]
|
202 |
+
},
|
203 |
+
"metadata": {},
|
204 |
+
"output_type": "display_data"
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"source": [
|
208 |
+
"xlm_large = AutoModel.from_pretrained(\"xlm-roberta-large\")"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": 3,
|
214 |
+
"id": "ba1b9da7-eafe-4c81-b47d-63ae94585b37",
|
215 |
+
"metadata": {
|
216 |
+
"tags": []
|
217 |
+
},
|
218 |
+
"outputs": [
|
219 |
+
{
|
220 |
+
"data": {
|
221 |
+
"text/plain": [
|
222 |
+
"XLMRobertaModel(\n",
|
223 |
+
" (embeddings): XLMRobertaEmbeddings(\n",
|
224 |
+
" (word_embeddings): Embedding(250002, 768, padding_idx=1)\n",
|
225 |
+
" (position_embeddings): Embedding(514, 768, padding_idx=1)\n",
|
226 |
+
" (token_type_embeddings): Embedding(1, 768)\n",
|
227 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
228 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
229 |
+
" )\n",
|
230 |
+
" (encoder): XLMRobertaEncoder(\n",
|
231 |
+
" (layer): ModuleList(\n",
|
232 |
+
" (0-11): 12 x XLMRobertaLayer(\n",
|
233 |
+
" (attention): XLMRobertaAttention(\n",
|
234 |
+
" (self): XLMRobertaSelfAttention(\n",
|
235 |
+
" (query): Linear(in_features=768, out_features=768, bias=True)\n",
|
236 |
+
" (key): Linear(in_features=768, out_features=768, bias=True)\n",
|
237 |
+
" (value): Linear(in_features=768, out_features=768, bias=True)\n",
|
238 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
239 |
+
" )\n",
|
240 |
+
" (output): XLMRobertaSelfOutput(\n",
|
241 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
242 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
243 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
244 |
+
" )\n",
|
245 |
+
" )\n",
|
246 |
+
" (intermediate): XLMRobertaIntermediate(\n",
|
247 |
+
" (dense): Linear(in_features=768, out_features=3072, bias=True)\n",
|
248 |
+
" (intermediate_act_fn): GELUActivation()\n",
|
249 |
+
" )\n",
|
250 |
+
" (output): XLMRobertaOutput(\n",
|
251 |
+
" (dense): Linear(in_features=3072, out_features=768, bias=True)\n",
|
252 |
+
" (LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
|
253 |
+
" (dropout): Dropout(p=0.1, inplace=False)\n",
|
254 |
+
" )\n",
|
255 |
+
" )\n",
|
256 |
+
" )\n",
|
257 |
+
" )\n",
|
258 |
+
" (pooler): XLMRobertaPooler(\n",
|
259 |
+
" (dense): Linear(in_features=768, out_features=768, bias=True)\n",
|
260 |
+
" (activation): Tanh()\n",
|
261 |
+
" )\n",
|
262 |
+
")"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
"execution_count": 3,
|
266 |
+
"metadata": {},
|
267 |
+
"output_type": "execute_result"
|
268 |
+
}
|
269 |
+
],
|
270 |
+
"source": [
|
271 |
+
"xlm_base"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": 6,
|
277 |
+
"id": "53fcc03e-d6f5-41c3-9dc2-2922e6747896",
|
278 |
+
"metadata": {
|
279 |
+
"tags": []
|
280 |
+
},
|
281 |
+
"outputs": [
|
282 |
+
{
|
283 |
+
"data": {
|
284 |
+
"text/plain": [
|
285 |
+
"tensor([[ 0.0578, -0.0071, -0.0068, ..., 0.0061, -0.0260, -0.0291],\n",
|
286 |
+
" [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
287 |
+
" [-0.1564, -0.0728, -0.2477, ..., -0.0778, -0.3088, -0.0090],\n",
|
288 |
+
" ...,\n",
|
289 |
+
" [ 0.0118, 0.0458, -0.0054, ..., -0.0865, 0.0374, 0.0040],\n",
|
290 |
+
" [ 0.0525, -0.0270, -0.0141, ..., -0.0552, 0.0349, 0.0274],\n",
|
291 |
+
" [-0.0479, -0.0293, 0.1079, ..., -0.0825, 0.2908, 0.0861]])"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
"execution_count": 6,
|
295 |
+
"metadata": {},
|
296 |
+
"output_type": "execute_result"
|
297 |
+
}
|
298 |
+
],
|
299 |
+
"source": [
|
300 |
+
"old_embeddings = xlm_base.embeddings.position_embeddings.weight.data\n",
|
301 |
+
"old_embeddings"
|
302 |
+
]
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"cell_type": "code",
|
306 |
+
"execution_count": 7,
|
307 |
+
"id": "fc69704e-51a6-489f-8b6a-b776d1027a2a",
|
308 |
+
"metadata": {
|
309 |
+
"tags": []
|
310 |
+
},
|
311 |
+
"outputs": [
|
312 |
+
{
|
313 |
+
"data": {
|
314 |
+
"text/plain": [
|
315 |
+
"torch.Size([514, 768])"
|
316 |
+
]
|
317 |
+
},
|
318 |
+
"execution_count": 7,
|
319 |
+
"metadata": {},
|
320 |
+
"output_type": "execute_result"
|
321 |
+
}
|
322 |
+
],
|
323 |
+
"source": [
|
324 |
+
"old_embeddings.shape"
|
325 |
+
]
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"cell_type": "code",
|
329 |
+
"execution_count": 8,
|
330 |
+
"id": "714faf1f-ec8c-4e39-986f-5624658c8a9d",
|
331 |
+
"metadata": {
|
332 |
+
"tags": []
|
333 |
+
},
|
334 |
+
"outputs": [],
|
335 |
+
"source": [
|
336 |
+
"import torch\n",
|
337 |
+
"\n",
|
338 |
+
"new_embeddings = torch.zeros((2050, 768))"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 10,
|
344 |
+
"id": "4eb8dfff-57a7-4e2c-a060-54d7ec84e2d7",
|
345 |
+
"metadata": {
|
346 |
+
"tags": []
|
347 |
+
},
|
348 |
+
"outputs": [],
|
349 |
+
"source": [
|
350 |
+
"new_embeddings[:514, :] = old_embeddings.clone()"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"cell_type": "code",
|
355 |
+
"execution_count": 19,
|
356 |
+
"id": "0a4dcbb8-20f1-476c-83b0-199d3e406888",
|
357 |
+
"metadata": {
|
358 |
+
"tags": []
|
359 |
+
},
|
360 |
+
"outputs": [
|
361 |
+
{
|
362 |
+
"name": "stdout",
|
363 |
+
"output_type": "stream",
|
364 |
+
"text": [
|
365 |
+
"514 1026\n",
|
366 |
+
"1026 1538\n",
|
367 |
+
"1538 2050\n"
|
368 |
+
]
|
369 |
+
}
|
370 |
+
],
|
371 |
+
"source": [
|
372 |
+
"num_pos = 514\n",
|
373 |
+
"\n",
|
374 |
+
"for i in range(3):\n",
|
375 |
+
" start_idx = num_pos+512*i\n",
|
376 |
+
" end_idx = start_idx + 512\n",
|
377 |
+
" new_embeddings[start_idx:end_idx, :] = old_embeddings[2:, :].clone()\n",
|
378 |
+
" print(start_idx, end_idx)"
|
379 |
+
]
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"cell_type": "code",
|
383 |
+
"execution_count": 30,
|
384 |
+
"id": "6530a6fa-fe8e-4d37-9e35-1272643d04c4",
|
385 |
+
"metadata": {
|
386 |
+
"tags": []
|
387 |
+
},
|
388 |
+
"outputs": [
|
389 |
+
{
|
390 |
+
"name": "stderr",
|
391 |
+
"output_type": "stream",
|
392 |
+
"text": [
|
393 |
+
"Some weights of XLMRobertaModel were not initialized from the model checkpoint at xlm-roberta-base and are newly initialized because the shapes did not match:\n",
|
394 |
+
"- roberta.embeddings.position_embeddings.weight: found shape torch.Size([514, 768]) in the checkpoint and torch.Size([2050, 768]) in the model instantiated\n",
|
395 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
396 |
+
]
|
397 |
+
}
|
398 |
+
],
|
399 |
+
"source": [
|
400 |
+
"\n",
|
401 |
+
"xlm_base = AutoModel.from_pretrained(\"xlm-roberta-base\", max_position_embeddings=2050, ignore_mismatched_sizes=True)\n",
|
402 |
+
"\n",
|
403 |
+
"xlm_base.embeddings.position_embeddings.weight.data = new_embeddings"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": 31,
|
409 |
+
"id": "ae8250bb-2d81-4ad9-b281-84d9ad3d9114",
|
410 |
+
"metadata": {
|
411 |
+
"tags": []
|
412 |
+
},
|
413 |
+
"outputs": [],
|
414 |
+
"source": [
|
415 |
+
"with torch.no_grad():\n",
|
416 |
+
" xlm_base(input_ids=seq_2048)"
|
417 |
+
]
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"cell_type": "code",
|
421 |
+
"execution_count": 33,
|
422 |
+
"id": "1e77aea0-65ff-403c-87cc-14afd87d7646",
|
423 |
+
"metadata": {
|
424 |
+
"tags": []
|
425 |
+
},
|
426 |
+
"outputs": [
|
427 |
+
{
|
428 |
+
"name": "stdout",
|
429 |
+
"output_type": "stream",
|
430 |
+
"text": [
|
431 |
+
"torch.Size([2050, 768])\n"
|
432 |
+
]
|
433 |
+
},
|
434 |
+
{
|
435 |
+
"data": {
|
436 |
+
"text/plain": [
|
437 |
+
"tensor([[ 0.0578, -0.0071, -0.0068, ..., 0.0061, -0.0260, -0.0291],\n",
|
438 |
+
" [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
|
439 |
+
" [-0.1564, -0.0728, -0.2477, ..., -0.0778, -0.3088, -0.0090],\n",
|
440 |
+
" ...,\n",
|
441 |
+
" [ 0.0118, 0.0458, -0.0054, ..., -0.0865, 0.0374, 0.0040],\n",
|
442 |
+
" [ 0.0525, -0.0270, -0.0141, ..., -0.0552, 0.0349, 0.0274],\n",
|
443 |
+
" [-0.0479, -0.0293, 0.1079, ..., -0.0825, 0.2908, 0.0861]])"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
"execution_count": 33,
|
447 |
+
"metadata": {},
|
448 |
+
"output_type": "execute_result"
|
449 |
+
}
|
450 |
+
],
|
451 |
+
"source": [
|
452 |
+
"print(xlm_base.embeddings.position_embeddings.weight.data.shape)\n",
|
453 |
+
"xlm_base.embeddings.position_embeddings.weight.data"
|
454 |
+
]
|
455 |
+
},
|
456 |
+
{
|
457 |
+
"cell_type": "code",
|
458 |
+
"execution_count": 34,
|
459 |
+
"id": "74297602-9c8e-4341-96cc-b26435046082",
|
460 |
+
"metadata": {
|
461 |
+
"tags": []
|
462 |
+
},
|
463 |
+
"outputs": [
|
464 |
+
{
|
465 |
+
"name": "stdout",
|
466 |
+
"output_type": "stream",
|
467 |
+
"text": [
|
468 |
+
"514 1026\n",
|
469 |
+
"1026 1538\n",
|
470 |
+
"1538 2050\n"
|
471 |
+
]
|
472 |
+
}
|
473 |
+
],
|
474 |
+
"source": [
|
475 |
+
"old_embeddings = xlm_large.embeddings.position_embeddings.weight.data\n",
|
476 |
+
"\n",
|
477 |
+
"new_embeddings = torch.zeros((2050, old_embeddings.shape[1]))\n",
|
478 |
+
"\n",
|
479 |
+
"new_embeddings[:514, :] = old_embeddings.clone()\n",
|
480 |
+
"\n",
|
481 |
+
"num_pos = 514\n",
|
482 |
+
"\n",
|
483 |
+
"for i in range(3):\n",
|
484 |
+
" start_idx = num_pos+512*i\n",
|
485 |
+
" end_idx = start_idx + 512\n",
|
486 |
+
" new_embeddings[start_idx:end_idx, :] = old_embeddings[2:, :].clone()\n",
|
487 |
+
" print(start_idx, end_idx)"
|
488 |
+
]
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"cell_type": "code",
|
492 |
+
"execution_count": 35,
|
493 |
+
"id": "57ccd5e8-667a-4fae-be04-55c14aa1a316",
|
494 |
+
"metadata": {
|
495 |
+
"tags": []
|
496 |
+
},
|
497 |
+
"outputs": [
|
498 |
+
{
|
499 |
+
"name": "stderr",
|
500 |
+
"output_type": "stream",
|
501 |
+
"text": [
|
502 |
+
"Some weights of XLMRobertaModel were not initialized from the model checkpoint at xlm-roberta-large and are newly initialized because the shapes did not match:\n",
|
503 |
+
"- roberta.embeddings.position_embeddings.weight: found shape torch.Size([514, 1024]) in the checkpoint and torch.Size([2050, 1024]) in the model instantiated\n",
|
504 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
505 |
+
]
|
506 |
+
}
|
507 |
+
],
|
508 |
+
"source": [
|
509 |
+
"xlm_large = AutoModel.from_pretrained(\"xlm-roberta-large\", max_position_embeddings=2050, ignore_mismatched_sizes=True)\n",
|
510 |
+
"\n",
|
511 |
+
"xlm_large.embeddings.position_embeddings.weight.data = new_embeddings"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"cell_type": "code",
|
516 |
+
"execution_count": 37,
|
517 |
+
"id": "1b584a7b-19b0-45ac-824c-57e37bf2bf75",
|
518 |
+
"metadata": {
|
519 |
+
"tags": []
|
520 |
+
},
|
521 |
+
"outputs": [
|
522 |
+
{
|
523 |
+
"name": "stdout",
|
524 |
+
"output_type": "stream",
|
525 |
+
"text": [
|
526 |
+
"The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.\n",
|
527 |
+
"Token is valid (permission: write).\n",
|
528 |
+
"Your token has been saved to /home/user/.cache/huggingface/token\n",
|
529 |
+
"Login successful\n"
|
530 |
+
]
|
531 |
+
}
|
532 |
+
],
|
533 |
+
"source": [
|
534 |
+
"!huggingface-cli login"
|
535 |
+
]
|
536 |
+
},
|
537 |
+
{
|
538 |
+
"cell_type": "code",
|
539 |
+
"execution_count": 38,
|
540 |
+
"id": "3b5f110a-c30d-4b83-997b-384cf159f1c4",
|
541 |
+
"metadata": {
|
542 |
+
"tags": []
|
543 |
+
},
|
544 |
+
"outputs": [
|
545 |
+
{
|
546 |
+
"data": {
|
547 |
+
"application/json": {
|
548 |
+
"ascii": false,
|
549 |
+
"bar_format": null,
|
550 |
+
"colour": null,
|
551 |
+
"elapsed": 0.004299163818359375,
|
552 |
+
"initial": 0,
|
553 |
+
"n": 0,
|
554 |
+
"ncols": null,
|
555 |
+
"nrows": null,
|
556 |
+
"postfix": null,
|
557 |
+
"prefix": "model.safetensors",
|
558 |
+
"rate": null,
|
559 |
+
"total": 2245898632,
|
560 |
+
"unit": "B",
|
561 |
+
"unit_divisor": 1000,
|
562 |
+
"unit_scale": true
|
563 |
+
},
|
564 |
+
"application/vnd.jupyter.widget-view+json": {
|
565 |
+
"model_id": "d1193e52abce44fdba074b5996560954",
|
566 |
+
"version_major": 2,
|
567 |
+
"version_minor": 0
|
568 |
+
},
|
569 |
+
"text/plain": [
|
570 |
+
"model.safetensors: 0%| | 0.00/2.25G [00:00<?, ?B/s]"
|
571 |
+
]
|
572 |
+
},
|
573 |
+
"metadata": {},
|
574 |
+
"output_type": "display_data"
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"data": {
|
578 |
+
"text/plain": [
|
579 |
+
"CommitInfo(commit_url='https://huggingface.co/nbroad/xlm-roberta-large-2048/commit/8270d498aad31c695866c0fbcf5c7eb932b69590', commit_message='Upload model', commit_description='', oid='8270d498aad31c695866c0fbcf5c7eb932b69590', pr_url=None, pr_revision=None, pr_num=None)"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
"execution_count": 38,
|
583 |
+
"metadata": {},
|
584 |
+
"output_type": "execute_result"
|
585 |
+
}
|
586 |
+
],
|
587 |
+
"source": [
|
588 |
+
"xlm_large.push_to_hub(\"nbroad/xlm-roberta-large-2048\")"
|
589 |
+
]
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"cell_type": "code",
|
593 |
+
"execution_count": 39,
|
594 |
+
"id": "b0448ee6-e471-44f3-ac8e-e18ed66adcbb",
|
595 |
+
"metadata": {
|
596 |
+
"tags": []
|
597 |
+
},
|
598 |
+
"outputs": [
|
599 |
+
{
|
600 |
+
"data": {
|
601 |
+
"application/json": {
|
602 |
+
"ascii": false,
|
603 |
+
"bar_format": null,
|
604 |
+
"colour": null,
|
605 |
+
"elapsed": 0.003611326217651367,
|
606 |
+
"initial": 0,
|
607 |
+
"n": 0,
|
608 |
+
"ncols": null,
|
609 |
+
"nrows": null,
|
610 |
+
"postfix": null,
|
611 |
+
"prefix": "model.safetensors",
|
612 |
+
"rate": null,
|
613 |
+
"total": 1116915696,
|
614 |
+
"unit": "B",
|
615 |
+
"unit_divisor": 1000,
|
616 |
+
"unit_scale": true
|
617 |
+
},
|
618 |
+
"application/vnd.jupyter.widget-view+json": {
|
619 |
+
"model_id": "2c2058a26f1641ea8645220c91f50d73",
|
620 |
+
"version_major": 2,
|
621 |
+
"version_minor": 0
|
622 |
+
},
|
623 |
+
"text/plain": [
|
624 |
+
"model.safetensors: 0%| | 0.00/1.12G [00:00<?, ?B/s]"
|
625 |
+
]
|
626 |
+
},
|
627 |
+
"metadata": {},
|
628 |
+
"output_type": "display_data"
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"data": {
|
632 |
+
"text/plain": [
|
633 |
+
"CommitInfo(commit_url='https://huggingface.co/nbroad/xlm-roberta-base-2048/commit/4daea3ba9080f535f1fc819cbc76453248252f6b', commit_message='Upload model', commit_description='', oid='4daea3ba9080f535f1fc819cbc76453248252f6b', pr_url=None, pr_revision=None, pr_num=None)"
|
634 |
+
]
|
635 |
+
},
|
636 |
+
"execution_count": 39,
|
637 |
+
"metadata": {},
|
638 |
+
"output_type": "execute_result"
|
639 |
+
}
|
640 |
+
],
|
641 |
+
"source": [
|
642 |
+
"xlm_base.push_to_hub(\"nbroad/xlm-roberta-base-2048\")"
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"cell_type": "code",
|
647 |
+
"execution_count": 40,
|
648 |
+
"id": "5bae84dc-a5c1-40cd-9eaf-a42e0a4276f3",
|
649 |
+
"metadata": {
|
650 |
+
"tags": []
|
651 |
+
},
|
652 |
+
"outputs": [],
|
653 |
+
"source": [
|
654 |
+
"from transformers import AutoTokenizer\n",
|
655 |
+
"\n",
|
656 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"xlm-roberta-base\")"
|
657 |
+
]
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"cell_type": "code",
|
661 |
+
"execution_count": 42,
|
662 |
+
"id": "1bbf303d-8613-43dd-9a1e-4fb597920b78",
|
663 |
+
"metadata": {
|
664 |
+
"tags": []
|
665 |
+
},
|
666 |
+
"outputs": [],
|
667 |
+
"source": [
|
668 |
+
"tokenizer.model_max_length = 2048"
|
669 |
+
]
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"cell_type": "code",
|
673 |
+
"execution_count": 44,
|
674 |
+
"id": "07add3fd-e539-43ef-be9b-9409e5f44e40",
|
675 |
+
"metadata": {
|
676 |
+
"tags": []
|
677 |
+
},
|
678 |
+
"outputs": [
|
679 |
+
{
|
680 |
+
"data": {
|
681 |
+
"application/json": {
|
682 |
+
"ascii": false,
|
683 |
+
"bar_format": null,
|
684 |
+
"colour": null,
|
685 |
+
"elapsed": 0.0037915706634521484,
|
686 |
+
"initial": 0,
|
687 |
+
"n": 0,
|
688 |
+
"ncols": null,
|
689 |
+
"nrows": null,
|
690 |
+
"postfix": null,
|
691 |
+
"prefix": "README.md",
|
692 |
+
"rate": null,
|
693 |
+
"total": 5174,
|
694 |
+
"unit": "B",
|
695 |
+
"unit_divisor": 1000,
|
696 |
+
"unit_scale": true
|
697 |
+
},
|
698 |
+
"application/vnd.jupyter.widget-view+json": {
|
699 |
+
"model_id": "a2b9909d0e784de0bc03e1edc6b8e21a",
|
700 |
+
"version_major": 2,
|
701 |
+
"version_minor": 0
|
702 |
+
},
|
703 |
+
"text/plain": [
|
704 |
+
"README.md: 0%| | 0.00/5.17k [00:00<?, ?B/s]"
|
705 |
+
]
|
706 |
+
},
|
707 |
+
"metadata": {},
|
708 |
+
"output_type": "display_data"
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"data": {
|
712 |
+
"application/json": {
|
713 |
+
"ascii": false,
|
714 |
+
"bar_format": null,
|
715 |
+
"colour": null,
|
716 |
+
"elapsed": 0.0038919448852539062,
|
717 |
+
"initial": 0,
|
718 |
+
"n": 0,
|
719 |
+
"ncols": null,
|
720 |
+
"nrows": null,
|
721 |
+
"postfix": null,
|
722 |
+
"prefix": "sentencepiece.bpe.model",
|
723 |
+
"rate": null,
|
724 |
+
"total": 5069051,
|
725 |
+
"unit": "B",
|
726 |
+
"unit_divisor": 1000,
|
727 |
+
"unit_scale": true
|
728 |
+
},
|
729 |
+
"application/vnd.jupyter.widget-view+json": {
|
730 |
+
"model_id": "9d22217b68554e9ab3c67be3dce5d9a3",
|
731 |
+
"version_major": 2,
|
732 |
+
"version_minor": 0
|
733 |
+
},
|
734 |
+
"text/plain": [
|
735 |
+
"sentencepiece.bpe.model: 0%| | 0.00/5.07M [00:00<?, ?B/s]"
|
736 |
+
]
|
737 |
+
},
|
738 |
+
"metadata": {},
|
739 |
+
"output_type": "display_data"
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"data": {
|
743 |
+
"application/json": {
|
744 |
+
"ascii": false,
|
745 |
+
"bar_format": null,
|
746 |
+
"colour": null,
|
747 |
+
"elapsed": 0.0034050941467285156,
|
748 |
+
"initial": 0,
|
749 |
+
"n": 0,
|
750 |
+
"ncols": null,
|
751 |
+
"nrows": null,
|
752 |
+
"postfix": null,
|
753 |
+
"prefix": "Upload 2 LFS files",
|
754 |
+
"rate": null,
|
755 |
+
"total": 2,
|
756 |
+
"unit": "it",
|
757 |
+
"unit_divisor": 1000,
|
758 |
+
"unit_scale": false
|
759 |
+
},
|
760 |
+
"application/vnd.jupyter.widget-view+json": {
|
761 |
+
"model_id": "e0f6e1f6662c44a1b434ee81980cbe97",
|
762 |
+
"version_major": 2,
|
763 |
+
"version_minor": 0
|
764 |
+
},
|
765 |
+
"text/plain": [
|
766 |
+
"Upload 2 LFS files: 0%| | 0/2 [00:00<?, ?it/s]"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
"metadata": {},
|
770 |
+
"output_type": "display_data"
|
771 |
+
},
|
772 |
+
{
|
773 |
+
"data": {
|
774 |
+
"application/json": {
|
775 |
+
"ascii": false,
|
776 |
+
"bar_format": null,
|
777 |
+
"colour": null,
|
778 |
+
"elapsed": 0.0035247802734375,
|
779 |
+
"initial": 0,
|
780 |
+
"n": 0,
|
781 |
+
"ncols": null,
|
782 |
+
"nrows": null,
|
783 |
+
"postfix": null,
|
784 |
+
"prefix": "tokenizer.json",
|
785 |
+
"rate": null,
|
786 |
+
"total": 17082734,
|
787 |
+
"unit": "B",
|
788 |
+
"unit_divisor": 1000,
|
789 |
+
"unit_scale": true
|
790 |
+
},
|
791 |
+
"application/vnd.jupyter.widget-view+json": {
|
792 |
+
"model_id": "6db7d931fd2846ad9fa36c0612b9aa71",
|
793 |
+
"version_major": 2,
|
794 |
+
"version_minor": 0
|
795 |
+
},
|
796 |
+
"text/plain": [
|
797 |
+
"tokenizer.json: 0%| | 0.00/17.1M [00:00<?, ?B/s]"
|
798 |
+
]
|
799 |
+
},
|
800 |
+
"metadata": {},
|
801 |
+
"output_type": "display_data"
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"data": {
|
805 |
+
"text/plain": [
|
806 |
+
"CommitInfo(commit_url='https://huggingface.co/nbroad/xlm-roberta-base-2048/commit/82129a4b55ea013dd3fa2816c24696814b08a6b4', commit_message='Upload tokenizer', commit_description='', oid='82129a4b55ea013dd3fa2816c24696814b08a6b4', pr_url=None, pr_revision=None, pr_num=None)"
|
807 |
+
]
|
808 |
+
},
|
809 |
+
"execution_count": 44,
|
810 |
+
"metadata": {},
|
811 |
+
"output_type": "execute_result"
|
812 |
+
}
|
813 |
+
],
|
814 |
+
"source": [
|
815 |
+
"tokenizer.push_to_hub(\"nbroad/xlm-roberta-base-2048\")"
|
816 |
+
]
|
817 |
+
},
|
818 |
+
{
|
819 |
+
"cell_type": "code",
|
820 |
+
"execution_count": 45,
|
821 |
+
"id": "2ab6599e-3621-469f-8bdd-389cf7f60088",
|
822 |
+
"metadata": {
|
823 |
+
"tags": []
|
824 |
+
},
|
825 |
+
"outputs": [
|
826 |
+
{
|
827 |
+
"data": {
|
828 |
+
"application/json": {
|
829 |
+
"ascii": false,
|
830 |
+
"bar_format": null,
|
831 |
+
"colour": null,
|
832 |
+
"elapsed": 0.0036215782165527344,
|
833 |
+
"initial": 0,
|
834 |
+
"n": 0,
|
835 |
+
"ncols": null,
|
836 |
+
"nrows": null,
|
837 |
+
"postfix": null,
|
838 |
+
"prefix": "tokenizer_config.json",
|
839 |
+
"rate": null,
|
840 |
+
"total": 25,
|
841 |
+
"unit": "B",
|
842 |
+
"unit_divisor": 1000,
|
843 |
+
"unit_scale": true
|
844 |
+
},
|
845 |
+
"application/vnd.jupyter.widget-view+json": {
|
846 |
+
"model_id": "4c30d397f9344f2ca227d117618d25ce",
|
847 |
+
"version_major": 2,
|
848 |
+
"version_minor": 0
|
849 |
+
},
|
850 |
+
"text/plain": [
|
851 |
+
"tokenizer_config.json: 0%| | 0.00/25.0 [00:00<?, ?B/s]"
|
852 |
+
]
|
853 |
+
},
|
854 |
+
"metadata": {},
|
855 |
+
"output_type": "display_data"
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"data": {
|
859 |
+
"application/json": {
|
860 |
+
"ascii": false,
|
861 |
+
"bar_format": null,
|
862 |
+
"colour": null,
|
863 |
+
"elapsed": 0.003586292266845703,
|
864 |
+
"initial": 0,
|
865 |
+
"n": 0,
|
866 |
+
"ncols": null,
|
867 |
+
"nrows": null,
|
868 |
+
"postfix": null,
|
869 |
+
"prefix": "sentencepiece.bpe.model",
|
870 |
+
"rate": null,
|
871 |
+
"total": 5069051,
|
872 |
+
"unit": "B",
|
873 |
+
"unit_divisor": 1000,
|
874 |
+
"unit_scale": true
|
875 |
+
},
|
876 |
+
"application/vnd.jupyter.widget-view+json": {
|
877 |
+
"model_id": "d094dd6bccd84006b0d7347d8dbdccfe",
|
878 |
+
"version_major": 2,
|
879 |
+
"version_minor": 0
|
880 |
+
},
|
881 |
+
"text/plain": [
|
882 |
+
"sentencepiece.bpe.model: 0%| | 0.00/5.07M [00:00<?, ?B/s]"
|
883 |
+
]
|
884 |
+
},
|
885 |
+
"metadata": {},
|
886 |
+
"output_type": "display_data"
|
887 |
+
},
|
888 |
+
{
|
889 |
+
"data": {
|
890 |
+
"application/json": {
|
891 |
+
"ascii": false,
|
892 |
+
"bar_format": null,
|
893 |
+
"colour": null,
|
894 |
+
"elapsed": 0.003679037094116211,
|
895 |
+
"initial": 0,
|
896 |
+
"n": 0,
|
897 |
+
"ncols": null,
|
898 |
+
"nrows": null,
|
899 |
+
"postfix": null,
|
900 |
+
"prefix": "tokenizer.json",
|
901 |
+
"rate": null,
|
902 |
+
"total": 9096718,
|
903 |
+
"unit": "B",
|
904 |
+
"unit_divisor": 1000,
|
905 |
+
"unit_scale": true
|
906 |
+
},
|
907 |
+
"application/vnd.jupyter.widget-view+json": {
|
908 |
+
"model_id": "ff510cc6c58c42dc93c74d607543b734",
|
909 |
+
"version_major": 2,
|
910 |
+
"version_minor": 0
|
911 |
+
},
|
912 |
+
"text/plain": [
|
913 |
+
"tokenizer.json: 0%| | 0.00/9.10M [00:00<?, ?B/s]"
|
914 |
+
]
|
915 |
+
},
|
916 |
+
"metadata": {},
|
917 |
+
"output_type": "display_data"
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"data": {
|
921 |
+
"application/json": {
|
922 |
+
"ascii": false,
|
923 |
+
"bar_format": null,
|
924 |
+
"colour": null,
|
925 |
+
"elapsed": 0.003905057907104492,
|
926 |
+
"initial": 0,
|
927 |
+
"n": 0,
|
928 |
+
"ncols": null,
|
929 |
+
"nrows": null,
|
930 |
+
"postfix": null,
|
931 |
+
"prefix": "README.md",
|
932 |
+
"rate": null,
|
933 |
+
"total": 5174,
|
934 |
+
"unit": "B",
|
935 |
+
"unit_divisor": 1000,
|
936 |
+
"unit_scale": true
|
937 |
+
},
|
938 |
+
"application/vnd.jupyter.widget-view+json": {
|
939 |
+
"model_id": "b1d4be8d4e744082b9f48d6a92cc5f6c",
|
940 |
+
"version_major": 2,
|
941 |
+
"version_minor": 0
|
942 |
+
},
|
943 |
+
"text/plain": [
|
944 |
+
"README.md: 0%| | 0.00/5.17k [00:00<?, ?B/s]"
|
945 |
+
]
|
946 |
+
},
|
947 |
+
"metadata": {},
|
948 |
+
"output_type": "display_data"
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"data": {
|
952 |
+
"application/json": {
|
953 |
+
"ascii": false,
|
954 |
+
"bar_format": null,
|
955 |
+
"colour": null,
|
956 |
+
"elapsed": 0.0074939727783203125,
|
957 |
+
"initial": 0,
|
958 |
+
"n": 0,
|
959 |
+
"ncols": null,
|
960 |
+
"nrows": null,
|
961 |
+
"postfix": null,
|
962 |
+
"prefix": "Upload 2 LFS files",
|
963 |
+
"rate": null,
|
964 |
+
"total": 2,
|
965 |
+
"unit": "it",
|
966 |
+
"unit_divisor": 1000,
|
967 |
+
"unit_scale": false
|
968 |
+
},
|
969 |
+
"application/vnd.jupyter.widget-view+json": {
|
970 |
+
"model_id": "e32b5391525c4b448fadf8bbaf434f91",
|
971 |
+
"version_major": 2,
|
972 |
+
"version_minor": 0
|
973 |
+
},
|
974 |
+
"text/plain": [
|
975 |
+
"Upload 2 LFS files: 0%| | 0/2 [00:00<?, ?it/s]"
|
976 |
+
]
|
977 |
+
},
|
978 |
+
"metadata": {},
|
979 |
+
"output_type": "display_data"
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"data": {
|
983 |
+
"application/json": {
|
984 |
+
"ascii": false,
|
985 |
+
"bar_format": null,
|
986 |
+
"colour": null,
|
987 |
+
"elapsed": 0.0040264129638671875,
|
988 |
+
"initial": 0,
|
989 |
+
"n": 0,
|
990 |
+
"ncols": null,
|
991 |
+
"nrows": null,
|
992 |
+
"postfix": null,
|
993 |
+
"prefix": "sentencepiece.bpe.model",
|
994 |
+
"rate": null,
|
995 |
+
"total": 5069051,
|
996 |
+
"unit": "B",
|
997 |
+
"unit_divisor": 1000,
|
998 |
+
"unit_scale": true
|
999 |
+
},
|
1000 |
+
"application/vnd.jupyter.widget-view+json": {
|
1001 |
+
"model_id": "d9260ad639034eacbc3ee0f3cf970751",
|
1002 |
+
"version_major": 2,
|
1003 |
+
"version_minor": 0
|
1004 |
+
},
|
1005 |
+
"text/plain": [
|
1006 |
+
"sentencepiece.bpe.model: 0%| | 0.00/5.07M [00:00<?, ?B/s]"
|
1007 |
+
]
|
1008 |
+
},
|
1009 |
+
"metadata": {},
|
1010 |
+
"output_type": "display_data"
|
1011 |
+
},
|
1012 |
+
{
|
1013 |
+
"data": {
|
1014 |
+
"application/json": {
|
1015 |
+
"ascii": false,
|
1016 |
+
"bar_format": null,
|
1017 |
+
"colour": null,
|
1018 |
+
"elapsed": 0.003367185592651367,
|
1019 |
+
"initial": 0,
|
1020 |
+
"n": 0,
|
1021 |
+
"ncols": null,
|
1022 |
+
"nrows": null,
|
1023 |
+
"postfix": null,
|
1024 |
+
"prefix": "tokenizer.json",
|
1025 |
+
"rate": null,
|
1026 |
+
"total": 17082734,
|
1027 |
+
"unit": "B",
|
1028 |
+
"unit_divisor": 1000,
|
1029 |
+
"unit_scale": true
|
1030 |
+
},
|
1031 |
+
"application/vnd.jupyter.widget-view+json": {
|
1032 |
+
"model_id": "71db7613c7d347128e7ddb745e1e5f6e",
|
1033 |
+
"version_major": 2,
|
1034 |
+
"version_minor": 0
|
1035 |
+
},
|
1036 |
+
"text/plain": [
|
1037 |
+
"tokenizer.json: 0%| | 0.00/17.1M [00:00<?, ?B/s]"
|
1038 |
+
]
|
1039 |
+
},
|
1040 |
+
"metadata": {},
|
1041 |
+
"output_type": "display_data"
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"ename": "AttributeError",
|
1045 |
+
"evalue": "'CommitInfo' object has no attribute 'push_to_hub'",
|
1046 |
+
"output_type": "error",
|
1047 |
+
"traceback": [
|
1048 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1049 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
1050 |
+
"Cell \u001b[0;32mIn[45], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m AutoTokenizer\u001b[38;5;241m.\u001b[39mfrom_pretrained(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mxlm-roberta-large\u001b[39m\u001b[38;5;124m\"\u001b[39m)\u001b[38;5;241m.\u001b[39mpush_to_hub(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnbroad/xlm-roberta-large-2048\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 2\u001b[0m tokenizer\u001b[38;5;241m.\u001b[39mmodel_max_length \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m2048\u001b[39m\n\u001b[0;32m----> 3\u001b[0m \u001b[43mtokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mnbroad/xlm-roberta-large-2048\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
|
1051 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'CommitInfo' object has no attribute 'push_to_hub'"
|
1052 |
+
]
|
1053 |
+
}
|
1054 |
+
],
|
1055 |
+
"source": [
|
1056 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"xlm-roberta-large\").push_to_hub(\"nbroad/xlm-roberta-large-2048\")\n",
|
1057 |
+
"tokenizer.model_max_length = 2048\n",
|
1058 |
+
"tokenizer.push_to_hub(\"nbroad/xlm-roberta-large-2048\")"
|
1059 |
+
]
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"cell_type": "code",
|
1063 |
+
"execution_count": null,
|
1064 |
+
"id": "f64c2a48-0850-4520-a7bc-f8870f570066",
|
1065 |
+
"metadata": {},
|
1066 |
+
"outputs": [],
|
1067 |
+
"source": []
|
1068 |
+
}
|
1069 |
+
],
|
1070 |
+
"metadata": {
|
1071 |
+
"kernelspec": {
|
1072 |
+
"display_name": "Python 3 (ipykernel)",
|
1073 |
+
"language": "python",
|
1074 |
+
"name": "python3"
|
1075 |
+
},
|
1076 |
+
"language_info": {
|
1077 |
+
"codemirror_mode": {
|
1078 |
+
"name": "ipython",
|
1079 |
+
"version": 3
|
1080 |
+
},
|
1081 |
+
"file_extension": ".py",
|
1082 |
+
"mimetype": "text/x-python",
|
1083 |
+
"name": "python",
|
1084 |
+
"nbconvert_exporter": "python",
|
1085 |
+
"pygments_lexer": "ipython3",
|
1086 |
+
"version": "3.9.5"
|
1087 |
+
}
|
1088 |
+
},
|
1089 |
+
"nbformat": 4,
|
1090 |
+
"nbformat_minor": 5
|
1091 |
+
}
|