File size: 21,717 Bytes
aa0c2cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/pipelines/pipeline_animation.py
import inspect
import os
import shutil
from typing import Callable, List, Optional, Union
import subprocess
import numpy as np
import torch
import torchvision
from diffusers.utils import is_accelerate_available
from packaging import version
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import deprecate, logging
from einops import rearrange
from ..models.unet import UNet3DConditionModel
from ..utils.image_processor import ImageProcessor
from ..utils.util import read_video, read_audio, write_video
from ..whisper.audio2feature import Audio2Feature
import tqdm
import soundfile as sf
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class LipsyncPipeline(DiffusionPipeline):
_optional_components = []
def __init__(
self,
vae: AutoencoderKL,
audio_encoder: Audio2Feature,
unet: UNet3DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
audio_encoder=audio_encoder,
unet=unet,
scheduler=scheduler,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.set_progress_bar_config(desc="Steps")
def enable_vae_slicing(self):
self.vae.enable_slicing()
def disable_vae_slicing(self):
self.vae.disable_slicing()
def enable_sequential_cpu_offload(self, gpu_id=0):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
latents = latents / self.vae.config.scaling_factor + self.vae.config.shift_factor
latents = rearrange(latents, "b c f h w -> (b f) c h w")
decoded_latents = self.vae.decode(latents).sample
return decoded_latents
def prepare_extra_step_kwargs(self, generator, eta):
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
# check if the scheduler accepts generator
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
if accepts_generator:
extra_step_kwargs["generator"] = generator
return extra_step_kwargs
def check_inputs(self, height, width, callback_steps):
assert height == width, "Height and width must be equal"
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
def prepare_latents(self, batch_size, num_frames, num_channels_latents, height, width, dtype, device, generator):
shape = (
batch_size,
num_channels_latents,
1,
height // self.vae_scale_factor,
width // self.vae_scale_factor,
)
rand_device = "cpu" if device.type == "mps" else device
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
latents = latents.repeat(1, 1, num_frames, 1, 1)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def prepare_mask_latents(
self, mask, masked_image, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
masked_image = masked_image.to(device=device, dtype=dtype)
# encode the mask image into latents space so we can concatenate it to the latents
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
masked_image_latents = (masked_image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
mask = mask.to(device=device, dtype=dtype)
# assume batch size = 1
mask = rearrange(mask, "f c h w -> 1 c f h w")
masked_image_latents = rearrange(masked_image_latents, "f c h w -> 1 c f h w")
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
return mask, masked_image_latents
def prepare_image_latents(self, images, device, dtype, generator, do_classifier_free_guidance):
images = images.to(device=device, dtype=dtype)
image_latents = self.vae.encode(images).latent_dist.sample(generator=generator)
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
image_latents = rearrange(image_latents, "f c h w -> 1 c f h w")
image_latents = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
return image_latents
def set_progress_bar_config(self, **kwargs):
if not hasattr(self, "_progress_bar_config"):
self._progress_bar_config = {}
self._progress_bar_config.update(kwargs)
@staticmethod
def paste_surrounding_pixels_back(decoded_latents, pixel_values, masks, device, weight_dtype):
# Paste the surrounding pixels back, because we only want to change the mouth region
pixel_values = pixel_values.to(device=device, dtype=weight_dtype)
masks = masks.to(device=device, dtype=weight_dtype)
combined_pixel_values = decoded_latents * masks + pixel_values * (1 - masks)
return combined_pixel_values
@staticmethod
def pixel_values_to_images(pixel_values: torch.Tensor):
pixel_values = rearrange(pixel_values, "f c h w -> f h w c")
pixel_values = (pixel_values / 2 + 0.5).clamp(0, 1)
images = (pixel_values * 255).to(torch.uint8)
images = images.cpu().numpy()
return images
def affine_transform_video(self, video_path):
video_frames = read_video(video_path, use_decord=False)
faces = []
boxes = []
affine_matrices = []
print(f"Affine transforming {len(video_frames)} faces...")
for frame in tqdm.tqdm(video_frames):
face, box, affine_matrix = self.image_processor.affine_transform(frame)
faces.append(face)
boxes.append(box)
affine_matrices.append(affine_matrix)
faces = torch.stack(faces)
return faces, video_frames, boxes, affine_matrices
def restore_video(self, faces, video_frames, boxes, affine_matrices):
video_frames = video_frames[: faces.shape[0]]
out_frames = []
for index, face in enumerate(faces):
x1, y1, x2, y2 = boxes[index]
height = int(y2 - y1)
width = int(x2 - x1)
face = torchvision.transforms.functional.resize(face, size=(height, width), antialias=True)
face = rearrange(face, "c h w -> h w c")
face = (face / 2 + 0.5).clamp(0, 1)
face = (face * 255).to(torch.uint8).cpu().numpy()
out_frame = self.image_processor.restorer.restore_img(video_frames[index], face, affine_matrices[index])
out_frames.append(out_frame)
return np.stack(out_frames, axis=0)
@torch.no_grad()
def __call__(
self,
video_path: str,
audio_path: str,
video_out_path: str,
video_mask_path: str = None,
num_frames: int = 16,
video_fps: int = 25,
audio_sample_rate: int = 16000,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 20,
guidance_scale: float = 1.5,
weight_dtype: Optional[torch.dtype] = torch.float16,
eta: float = 0.0,
mask: str = "fix_mask",
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
**kwargs,
):
is_train = self.unet.training
self.unet.eval()
# 0. Define call parameters
batch_size = 1
device = self._execution_device
self.image_processor = ImageProcessor(height, mask=mask, device="cuda")
self.set_progress_bar_config(desc=f"Sample frames: {num_frames}")
video_frames, original_video_frames, boxes, affine_matrices = self.affine_transform_video(video_path)
audio_samples = read_audio(audio_path)
# 1. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
# 2. Check inputs
self.check_inputs(height, width, callback_steps)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# 3. set timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 4. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
self.video_fps = video_fps
if self.unet.add_audio_layer:
whisper_feature = self.audio_encoder.audio2feat(audio_path)
whisper_chunks = self.audio_encoder.feature2chunks(feature_array=whisper_feature, fps=video_fps)
num_inferences = min(len(video_frames), len(whisper_chunks)) // num_frames
else:
num_inferences = len(video_frames) // num_frames
synced_video_frames = []
masked_video_frames = []
num_channels_latents = self.vae.config.latent_channels
# Prepare latent variables
all_latents = self.prepare_latents(
batch_size,
num_frames * num_inferences,
num_channels_latents,
height,
width,
weight_dtype,
device,
generator,
)
for i in tqdm.tqdm(range(num_inferences), desc="Doing inference..."):
if self.unet.add_audio_layer:
audio_embeds = torch.stack(whisper_chunks[i * num_frames : (i + 1) * num_frames])
audio_embeds = audio_embeds.to(device, dtype=weight_dtype)
if do_classifier_free_guidance:
empty_audio_embeds = torch.zeros_like(audio_embeds)
audio_embeds = torch.cat([empty_audio_embeds, audio_embeds])
else:
audio_embeds = None
inference_video_frames = video_frames[i * num_frames : (i + 1) * num_frames]
latents = all_latents[:, :, i * num_frames : (i + 1) * num_frames]
pixel_values, masked_pixel_values, masks = self.image_processor.prepare_masks_and_masked_images(
inference_video_frames, affine_transform=False
)
# 7. Prepare mask latent variables
mask_latents, masked_image_latents = self.prepare_mask_latents(
masks,
masked_pixel_values,
height,
width,
weight_dtype,
device,
generator,
do_classifier_free_guidance,
)
# 8. Prepare image latents
image_latents = self.prepare_image_latents(
pixel_values,
device,
weight_dtype,
generator,
do_classifier_free_guidance,
)
# 9. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
with self.progress_bar(total=num_inference_steps) as progress_bar:
for j, t in enumerate(timesteps):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
latent_model_input = torch.cat(
[latent_model_input, mask_latents, masked_image_latents, image_latents], dim=1
)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=audio_embeds).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_audio = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_audio - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if j == len(timesteps) - 1 or ((j + 1) > num_warmup_steps and (j + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and j % callback_steps == 0:
callback(j, t, latents)
# Recover the pixel values
decoded_latents = self.decode_latents(latents)
decoded_latents = self.paste_surrounding_pixels_back(
decoded_latents, pixel_values, 1 - masks, device, weight_dtype
)
synced_video_frames.append(decoded_latents)
masked_video_frames.append(masked_pixel_values)
synced_video_frames = self.restore_video(
torch.cat(synced_video_frames), original_video_frames, boxes, affine_matrices
)
masked_video_frames = self.restore_video(
torch.cat(masked_video_frames), original_video_frames, boxes, affine_matrices
)
audio_samples_remain_length = int(synced_video_frames.shape[0] / video_fps * audio_sample_rate)
audio_samples = audio_samples[:audio_samples_remain_length].cpu().numpy()
if is_train:
self.unet.train()
temp_dir = "temp"
if os.path.exists(temp_dir):
shutil.rmtree(temp_dir)
os.makedirs(temp_dir, exist_ok=True)
write_video(os.path.join(temp_dir, "video.mp4"), synced_video_frames, fps=25)
# write_video(video_mask_path, masked_video_frames, fps=25)
sf.write(os.path.join(temp_dir, "audio.wav"), audio_samples, audio_sample_rate)
command = f"ffmpeg -y -loglevel error -nostdin -i {os.path.join(temp_dir, 'video.mp4')} -i {os.path.join(temp_dir, 'audio.wav')} -c:v libx264 -c:a aac -q:v 0 -q:a 0 {video_out_path}"
subprocess.run(command, shell=True)
|