|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.nn as nn
|
|
from einops import rearrange
|
|
from .third_party.VideoMAEv2.utils import load_videomae_model
|
|
|
|
|
|
class TREPALoss:
|
|
def __init__(
|
|
self,
|
|
device="cuda",
|
|
ckpt_path="/mnt/bn/maliva-gen-ai-v2/chunyu.li/checkpoints/vit_g_hybrid_pt_1200e_ssv2_ft.pth",
|
|
):
|
|
self.model = load_videomae_model(device, ckpt_path).eval().to(dtype=torch.float16)
|
|
self.model.requires_grad_(False)
|
|
self.bce_loss = nn.BCELoss()
|
|
|
|
def __call__(self, videos_fake, videos_real, loss_type="mse"):
|
|
batch_size = videos_fake.shape[0]
|
|
num_frames = videos_fake.shape[2]
|
|
videos_fake = rearrange(videos_fake.clone(), "b c f h w -> (b f) c h w")
|
|
videos_real = rearrange(videos_real.clone(), "b c f h w -> (b f) c h w")
|
|
|
|
videos_fake = F.interpolate(videos_fake, size=(224, 224), mode="bilinear")
|
|
videos_real = F.interpolate(videos_real, size=(224, 224), mode="bilinear")
|
|
|
|
videos_fake = rearrange(videos_fake, "(b f) c h w -> b c f h w", f=num_frames)
|
|
videos_real = rearrange(videos_real, "(b f) c h w -> b c f h w", f=num_frames)
|
|
|
|
|
|
videos_fake = (videos_fake / 2 + 0.5).clamp(0, 1)
|
|
videos_real = (videos_real / 2 + 0.5).clamp(0, 1)
|
|
|
|
feats_fake = self.model.forward_features(videos_fake)
|
|
feats_real = self.model.forward_features(videos_real)
|
|
|
|
feats_fake = F.normalize(feats_fake, p=2, dim=1)
|
|
feats_real = F.normalize(feats_real, p=2, dim=1)
|
|
|
|
return F.mse_loss(feats_fake, feats_real)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
videos_fake = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16)
|
|
videos_real = torch.randn(2, 3, 16, 256, 256, requires_grad=True).to(device="cuda", dtype=torch.float16)
|
|
|
|
trepa_loss = TREPALoss(device="cuda")
|
|
loss = trepa_loss(videos_fake, videos_real)
|
|
print(loss)
|
|
|