|
|
|
|
|
import numpy as np
|
|
import cv2
|
|
|
|
|
|
def transformation_from_points(points1, points0, smooth=True, p_bias=None):
|
|
points2 = np.array(points0)
|
|
points2 = points2.astype(np.float64)
|
|
points1 = points1.astype(np.float64)
|
|
c1 = np.mean(points1, axis=0)
|
|
c2 = np.mean(points2, axis=0)
|
|
points1 -= c1
|
|
points2 -= c2
|
|
s1 = np.std(points1)
|
|
s2 = np.std(points2)
|
|
points1 /= s1
|
|
points2 /= s2
|
|
U, S, Vt = np.linalg.svd(np.matmul(points1.T, points2))
|
|
R = (np.matmul(U, Vt)).T
|
|
sR = (s2 / s1) * R
|
|
T = c2.reshape(2, 1) - (s2 / s1) * np.matmul(R, c1.reshape(2, 1))
|
|
M = np.concatenate((sR, T), axis=1)
|
|
if smooth:
|
|
bias = points2[2] - points1[2]
|
|
if p_bias is None:
|
|
p_bias = bias
|
|
else:
|
|
bias = p_bias * 0.2 + bias * 0.8
|
|
p_bias = bias
|
|
M[:, 2] = M[:, 2] + bias
|
|
return M, p_bias
|
|
|
|
|
|
class AlignRestore(object):
|
|
def __init__(self, align_points=3):
|
|
if align_points == 3:
|
|
self.upscale_factor = 1
|
|
self.crop_ratio = (2.8, 2.8)
|
|
self.face_template = np.array([[19 - 2, 30 - 10], [56 + 2, 30 - 10], [37.5, 45 - 5]])
|
|
self.face_template = self.face_template * 2.8
|
|
|
|
self.face_size = (int(75 * self.crop_ratio[0]), int(100 * self.crop_ratio[1]))
|
|
self.p_bias = None
|
|
|
|
def process(self, img, lmk_align=None, smooth=True, align_points=3):
|
|
aligned_face, affine_matrix = self.align_warp_face(img, lmk_align, smooth)
|
|
restored_img = self.restore_img(img, aligned_face, affine_matrix)
|
|
cv2.imwrite("restored.jpg", restored_img)
|
|
cv2.imwrite("aligned.jpg", aligned_face)
|
|
return aligned_face, restored_img
|
|
|
|
def align_warp_face(self, img, lmks3, smooth=True, border_mode="constant"):
|
|
affine_matrix, self.p_bias = transformation_from_points(lmks3, self.face_template, smooth, self.p_bias)
|
|
if border_mode == "constant":
|
|
border_mode = cv2.BORDER_CONSTANT
|
|
elif border_mode == "reflect101":
|
|
border_mode = cv2.BORDER_REFLECT101
|
|
elif border_mode == "reflect":
|
|
border_mode = cv2.BORDER_REFLECT
|
|
cropped_face = cv2.warpAffine(
|
|
img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=[127, 127, 127]
|
|
)
|
|
return cropped_face, affine_matrix
|
|
|
|
def align_warp_face2(self, img, landmark, border_mode="constant"):
|
|
affine_matrix = cv2.estimateAffinePartial2D(landmark, self.face_template)[0]
|
|
if border_mode == "constant":
|
|
border_mode = cv2.BORDER_CONSTANT
|
|
elif border_mode == "reflect101":
|
|
border_mode = cv2.BORDER_REFLECT101
|
|
elif border_mode == "reflect":
|
|
border_mode = cv2.BORDER_REFLECT
|
|
cropped_face = cv2.warpAffine(
|
|
img, affine_matrix, self.face_size, borderMode=border_mode, borderValue=(135, 133, 132)
|
|
)
|
|
return cropped_face, affine_matrix
|
|
|
|
def restore_img(self, input_img, face, affine_matrix):
|
|
h, w, _ = input_img.shape
|
|
h_up, w_up = int(h * self.upscale_factor), int(w * self.upscale_factor)
|
|
upsample_img = cv2.resize(input_img, (w_up, h_up), interpolation=cv2.INTER_LANCZOS4)
|
|
inverse_affine = cv2.invertAffineTransform(affine_matrix)
|
|
inverse_affine *= self.upscale_factor
|
|
if self.upscale_factor > 1:
|
|
extra_offset = 0.5 * self.upscale_factor
|
|
else:
|
|
extra_offset = 0
|
|
inverse_affine[:, 2] += extra_offset
|
|
inv_restored = cv2.warpAffine(face, inverse_affine, (w_up, h_up))
|
|
mask = np.ones((self.face_size[1], self.face_size[0]), dtype=np.float32)
|
|
inv_mask = cv2.warpAffine(mask, inverse_affine, (w_up, h_up))
|
|
inv_mask_erosion = cv2.erode(
|
|
inv_mask, np.ones((int(2 * self.upscale_factor), int(2 * self.upscale_factor)), np.uint8)
|
|
)
|
|
pasted_face = inv_mask_erosion[:, :, None] * inv_restored
|
|
total_face_area = np.sum(inv_mask_erosion)
|
|
w_edge = int(total_face_area**0.5) // 20
|
|
erosion_radius = w_edge * 2
|
|
inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
|
|
blur_size = w_edge * 2
|
|
inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
|
|
inv_soft_mask = inv_soft_mask[:, :, None]
|
|
upsample_img = inv_soft_mask * pasted_face + (1 - inv_soft_mask) * upsample_img
|
|
if np.max(upsample_img) > 256:
|
|
upsample_img = upsample_img.astype(np.uint16)
|
|
else:
|
|
upsample_img = upsample_img.astype(np.uint8)
|
|
return upsample_img
|
|
|
|
|
|
class laplacianSmooth:
|
|
def __init__(self, smoothAlpha=0.3):
|
|
self.smoothAlpha = smoothAlpha
|
|
self.pts_last = None
|
|
|
|
def smooth(self, pts_cur):
|
|
if self.pts_last is None:
|
|
self.pts_last = pts_cur.copy()
|
|
return pts_cur.copy()
|
|
x1 = min(pts_cur[:, 0])
|
|
x2 = max(pts_cur[:, 0])
|
|
y1 = min(pts_cur[:, 1])
|
|
y2 = max(pts_cur[:, 1])
|
|
width = x2 - x1
|
|
pts_update = []
|
|
for i in range(len(pts_cur)):
|
|
x_new, y_new = pts_cur[i]
|
|
x_old, y_old = self.pts_last[i]
|
|
tmp = (x_new - x_old) ** 2 + (y_new - y_old) ** 2
|
|
w = np.exp(-tmp / (width * self.smoothAlpha))
|
|
x = x_old * w + x_new * (1 - w)
|
|
y = y_old * w + y_new * (1 - w)
|
|
pts_update.append([x, y])
|
|
pts_update = np.array(pts_update)
|
|
self.pts_last = pts_update.copy()
|
|
|
|
return pts_update
|
|
|