|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import mediapipe as mp
|
|
from latentsync.utils.util import read_video, gather_video_paths_recursively
|
|
import os
|
|
import tqdm
|
|
from multiprocessing import Pool
|
|
|
|
|
|
class FaceDetector:
|
|
def __init__(self):
|
|
self.face_detection = mp.solutions.face_detection.FaceDetection(
|
|
model_selection=0, min_detection_confidence=0.5
|
|
)
|
|
|
|
def detect_face(self, image):
|
|
|
|
results = self.face_detection.process(image)
|
|
|
|
if not results.detections:
|
|
return False
|
|
|
|
if len(results.detections) != 1:
|
|
return False
|
|
return True
|
|
|
|
def detect_video(self, video_path):
|
|
try:
|
|
video_frames = read_video(video_path, change_fps=False)
|
|
except Exception as e:
|
|
print(f"Exception: {e} - {video_path}")
|
|
return False
|
|
if len(video_frames) == 0:
|
|
return False
|
|
for frame in video_frames:
|
|
if not self.detect_face(frame):
|
|
return False
|
|
return True
|
|
|
|
def close(self):
|
|
self.face_detection.close()
|
|
|
|
|
|
def remove_incorrect_affined(video_path):
|
|
if not os.path.isfile(video_path):
|
|
return
|
|
face_detector = FaceDetector()
|
|
has_face = face_detector.detect_video(video_path)
|
|
if not has_face:
|
|
os.remove(video_path)
|
|
print(f"Removed: {video_path}")
|
|
face_detector.close()
|
|
|
|
|
|
def remove_incorrect_affined_multiprocessing(input_dir, num_workers):
|
|
video_paths = gather_video_paths_recursively(input_dir)
|
|
print(f"Total videos: {len(video_paths)}")
|
|
|
|
print(f"Removing incorrect affined videos in {input_dir} ...")
|
|
with Pool(num_workers) as pool:
|
|
for _ in tqdm.tqdm(pool.imap_unordered(remove_incorrect_affined, video_paths), total=len(video_paths)):
|
|
pass
|
|
|
|
|
|
if __name__ == "__main__":
|
|
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/multilingual_dcc/high_visual_quality"
|
|
num_workers = 50
|
|
|
|
remove_incorrect_affined_multiprocessing(input_dir, num_workers)
|
|
|