|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch
|
|
import os
|
|
import torch.multiprocessing as mp
|
|
import time
|
|
|
|
|
|
def check_mem(cuda_device):
|
|
devices_info = (
|
|
os.popen('"/usr/bin/nvidia-smi" --query-gpu=memory.total,memory.used --format=csv,nounits,noheader')
|
|
.read()
|
|
.strip()
|
|
.split("\n")
|
|
)
|
|
total, used = devices_info[int(cuda_device)].split(",")
|
|
return total, used
|
|
|
|
|
|
def loop(cuda_device):
|
|
cuda_i = torch.device(f"cuda:{cuda_device}")
|
|
total, used = check_mem(cuda_device)
|
|
total = int(total)
|
|
used = int(used)
|
|
max_mem = int(total * 0.9)
|
|
block_mem = max_mem - used
|
|
while True:
|
|
x = torch.rand(20, 512, 512, dtype=torch.float, device=cuda_i)
|
|
y = torch.rand(20, 512, 512, dtype=torch.float, device=cuda_i)
|
|
time.sleep(0.001)
|
|
x = torch.matmul(x, y)
|
|
|
|
|
|
def main():
|
|
if torch.cuda.is_available():
|
|
num_processes = torch.cuda.device_count()
|
|
processes = list()
|
|
for i in range(num_processes):
|
|
p = mp.Process(target=loop, args=(i,))
|
|
p.start()
|
|
processes.append(p)
|
|
for p in processes:
|
|
p.join()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
main()
|
|
|