Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +491 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,491 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: thenlper/gte-base
|
3 |
+
library_name: sentence-transformers
|
4 |
+
pipeline_tag: sentence-similarity
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- generated_from_trainer
|
10 |
+
- dataset_size:1439
|
11 |
+
- loss:MultipleNegativesRankingLoss
|
12 |
+
widget:
|
13 |
+
- source_sentence: Motors and Generators (manufacturing)
|
14 |
+
sentences:
|
15 |
+
- Generator components
|
16 |
+
- Hydraulic pumps
|
17 |
+
- Positive displacement pumps for oil transport
|
18 |
+
- source_sentence: Heat Exchangers and Boilers Manufacturing
|
19 |
+
sentences:
|
20 |
+
- Insulation materials for boilers
|
21 |
+
- Water heaters
|
22 |
+
- Lubricants for roller bearings
|
23 |
+
- source_sentence: Industrial Molds And Mold Boxes
|
24 |
+
sentences:
|
25 |
+
- Logistics costs for machinery distribution
|
26 |
+
- Mold release agents
|
27 |
+
- Mold design and engineering services
|
28 |
+
- source_sentence: Industrial Patterns
|
29 |
+
sentences:
|
30 |
+
- Group I base oils
|
31 |
+
- Pattern making services
|
32 |
+
- Design patterns in software
|
33 |
+
- source_sentence: Lubricating And Similar Oils Not From Petroleum Refineries
|
34 |
+
sentences:
|
35 |
+
- Crude oil extraction costs
|
36 |
+
- Synthetic lubricants
|
37 |
+
- Crude oil
|
38 |
+
---
|
39 |
+
|
40 |
+
# SentenceTransformer based on thenlper/gte-base
|
41 |
+
|
42 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** Sentence Transformer
|
48 |
+
- **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
|
49 |
+
- **Maximum Sequence Length:** 512 tokens
|
50 |
+
- **Output Dimensionality:** 768 tokens
|
51 |
+
- **Similarity Function:** Cosine Similarity
|
52 |
+
<!-- - **Training Dataset:** Unknown -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
59 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
60 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
61 |
+
|
62 |
+
### Full Model Architecture
|
63 |
+
|
64 |
+
```
|
65 |
+
SentenceTransformer(
|
66 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
67 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
68 |
+
(2): Normalize()
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Usage
|
73 |
+
|
74 |
+
### Direct Usage (Sentence Transformers)
|
75 |
+
|
76 |
+
First install the Sentence Transformers library:
|
77 |
+
|
78 |
+
```bash
|
79 |
+
pip install -U sentence-transformers
|
80 |
+
```
|
81 |
+
|
82 |
+
Then you can load this model and run inference.
|
83 |
+
```python
|
84 |
+
from sentence_transformers import SentenceTransformer
|
85 |
+
|
86 |
+
# Download from the 🤗 Hub
|
87 |
+
model = SentenceTransformer("neel2306/RE-cp-costgen")
|
88 |
+
# Run inference
|
89 |
+
sentences = [
|
90 |
+
'Lubricating And Similar Oils Not From Petroleum Refineries',
|
91 |
+
'Synthetic lubricants',
|
92 |
+
'Crude oil',
|
93 |
+
]
|
94 |
+
embeddings = model.encode(sentences)
|
95 |
+
print(embeddings.shape)
|
96 |
+
# [3, 768]
|
97 |
+
|
98 |
+
# Get the similarity scores for the embeddings
|
99 |
+
similarities = model.similarity(embeddings, embeddings)
|
100 |
+
print(similarities.shape)
|
101 |
+
# [3, 3]
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Direct Usage (Transformers)
|
106 |
+
|
107 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
108 |
+
|
109 |
+
</details>
|
110 |
+
-->
|
111 |
+
|
112 |
+
<!--
|
113 |
+
### Downstream Usage (Sentence Transformers)
|
114 |
+
|
115 |
+
You can finetune this model on your own dataset.
|
116 |
+
|
117 |
+
<details><summary>Click to expand</summary>
|
118 |
+
|
119 |
+
</details>
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Out-of-Scope Use
|
124 |
+
|
125 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
<!--
|
129 |
+
## Bias, Risks and Limitations
|
130 |
+
|
131 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
132 |
+
-->
|
133 |
+
|
134 |
+
<!--
|
135 |
+
### Recommendations
|
136 |
+
|
137 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
138 |
+
-->
|
139 |
+
|
140 |
+
## Training Details
|
141 |
+
|
142 |
+
### Training Dataset
|
143 |
+
|
144 |
+
#### Unnamed Dataset
|
145 |
+
|
146 |
+
|
147 |
+
* Size: 1,439 training samples
|
148 |
+
* Columns: <code>anchor</code>, <code>positives</code>, and <code>negatives</code>
|
149 |
+
* Approximate statistics based on the first 1000 samples:
|
150 |
+
| | anchor | positives | negatives |
|
151 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
|
152 |
+
| type | string | string | string |
|
153 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 9.72 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.96 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 11 tokens</li></ul> |
|
154 |
+
* Samples:
|
155 |
+
| anchor | positives | negatives |
|
156 |
+
|:------------------------------------------------------------------------------|:-----------------------------------------------------|:------------------------------------------------------|
|
157 |
+
| <code>Other Metal Valve and Pipe Fitting Manufacturing</code> | <code>Pipe fittings</code> | <code>Rubber gaskets</code> |
|
158 |
+
| <code>Fluid Power Pump and Motor Manufacturing: Miscellaneous Receipts</code> | <code>Pneumatic motors</code> | <code>Gear pumps</code> |
|
159 |
+
| <code>Maintenance and Repair for Commercial Machinery</code> | <code>Labor costs for maintenance technicians</code> | <code>Office supplies for administrative tasks</code> |
|
160 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
161 |
+
```json
|
162 |
+
{
|
163 |
+
"scale": 20.0,
|
164 |
+
"similarity_fct": "cos_sim"
|
165 |
+
}
|
166 |
+
```
|
167 |
+
|
168 |
+
### Evaluation Dataset
|
169 |
+
|
170 |
+
#### Unnamed Dataset
|
171 |
+
|
172 |
+
|
173 |
+
* Size: 480 evaluation samples
|
174 |
+
* Columns: <code>anchor</code>, <code>positives</code>, and <code>negatives</code>
|
175 |
+
* Approximate statistics based on the first 480 samples:
|
176 |
+
| | anchor | positives | negatives |
|
177 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
178 |
+
| type | string | string | string |
|
179 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 10.4 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.97 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.09 tokens</li><li>max: 14 tokens</li></ul> |
|
180 |
+
* Samples:
|
181 |
+
| anchor | positives | negatives |
|
182 |
+
|:-----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------|
|
183 |
+
| <code>Other Metal Ore Mining</code> | <code>Aluminum ore processing</code> | <code>Metal alloy production</code> |
|
184 |
+
| <code>Bituminous Coal And Lignite Surface Mining: Processed Bituminous Coal And Lignite From Surface Operations</code> | <code>Processed Bituminous Coal</code> | <code>Anthracite Coal</code> |
|
185 |
+
| <code>Roofing Contractors</code> | <code>Labor costs for roofing installation</code> | <code>Foundation construction costs</code> |
|
186 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
187 |
+
```json
|
188 |
+
{
|
189 |
+
"scale": 20.0,
|
190 |
+
"similarity_fct": "cos_sim"
|
191 |
+
}
|
192 |
+
```
|
193 |
+
|
194 |
+
### Training Hyperparameters
|
195 |
+
#### Non-Default Hyperparameters
|
196 |
+
|
197 |
+
- `eval_strategy`: steps
|
198 |
+
- `per_device_train_batch_size`: 4
|
199 |
+
- `per_device_eval_batch_size`: 4
|
200 |
+
- `num_train_epochs`: 15
|
201 |
+
- `warmup_ratio`: 0.1
|
202 |
+
- `batch_sampler`: no_duplicates
|
203 |
+
|
204 |
+
#### All Hyperparameters
|
205 |
+
<details><summary>Click to expand</summary>
|
206 |
+
|
207 |
+
- `overwrite_output_dir`: False
|
208 |
+
- `do_predict`: False
|
209 |
+
- `eval_strategy`: steps
|
210 |
+
- `prediction_loss_only`: True
|
211 |
+
- `per_device_train_batch_size`: 4
|
212 |
+
- `per_device_eval_batch_size`: 4
|
213 |
+
- `per_gpu_train_batch_size`: None
|
214 |
+
- `per_gpu_eval_batch_size`: None
|
215 |
+
- `gradient_accumulation_steps`: 1
|
216 |
+
- `eval_accumulation_steps`: None
|
217 |
+
- `torch_empty_cache_steps`: None
|
218 |
+
- `learning_rate`: 5e-05
|
219 |
+
- `weight_decay`: 0.0
|
220 |
+
- `adam_beta1`: 0.9
|
221 |
+
- `adam_beta2`: 0.999
|
222 |
+
- `adam_epsilon`: 1e-08
|
223 |
+
- `max_grad_norm`: 1.0
|
224 |
+
- `num_train_epochs`: 15
|
225 |
+
- `max_steps`: -1
|
226 |
+
- `lr_scheduler_type`: linear
|
227 |
+
- `lr_scheduler_kwargs`: {}
|
228 |
+
- `warmup_ratio`: 0.1
|
229 |
+
- `warmup_steps`: 0
|
230 |
+
- `log_level`: passive
|
231 |
+
- `log_level_replica`: warning
|
232 |
+
- `log_on_each_node`: True
|
233 |
+
- `logging_nan_inf_filter`: True
|
234 |
+
- `save_safetensors`: True
|
235 |
+
- `save_on_each_node`: False
|
236 |
+
- `save_only_model`: False
|
237 |
+
- `restore_callback_states_from_checkpoint`: False
|
238 |
+
- `no_cuda`: False
|
239 |
+
- `use_cpu`: False
|
240 |
+
- `use_mps_device`: False
|
241 |
+
- `seed`: 42
|
242 |
+
- `data_seed`: None
|
243 |
+
- `jit_mode_eval`: False
|
244 |
+
- `use_ipex`: False
|
245 |
+
- `bf16`: False
|
246 |
+
- `fp16`: False
|
247 |
+
- `fp16_opt_level`: O1
|
248 |
+
- `half_precision_backend`: auto
|
249 |
+
- `bf16_full_eval`: False
|
250 |
+
- `fp16_full_eval`: False
|
251 |
+
- `tf32`: None
|
252 |
+
- `local_rank`: 0
|
253 |
+
- `ddp_backend`: None
|
254 |
+
- `tpu_num_cores`: None
|
255 |
+
- `tpu_metrics_debug`: False
|
256 |
+
- `debug`: []
|
257 |
+
- `dataloader_drop_last`: False
|
258 |
+
- `dataloader_num_workers`: 0
|
259 |
+
- `dataloader_prefetch_factor`: None
|
260 |
+
- `past_index`: -1
|
261 |
+
- `disable_tqdm`: False
|
262 |
+
- `remove_unused_columns`: True
|
263 |
+
- `label_names`: None
|
264 |
+
- `load_best_model_at_end`: False
|
265 |
+
- `ignore_data_skip`: False
|
266 |
+
- `fsdp`: []
|
267 |
+
- `fsdp_min_num_params`: 0
|
268 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
269 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
270 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
271 |
+
- `deepspeed`: None
|
272 |
+
- `label_smoothing_factor`: 0.0
|
273 |
+
- `optim`: adamw_torch
|
274 |
+
- `optim_args`: None
|
275 |
+
- `adafactor`: False
|
276 |
+
- `group_by_length`: False
|
277 |
+
- `length_column_name`: length
|
278 |
+
- `ddp_find_unused_parameters`: None
|
279 |
+
- `ddp_bucket_cap_mb`: None
|
280 |
+
- `ddp_broadcast_buffers`: False
|
281 |
+
- `dataloader_pin_memory`: True
|
282 |
+
- `dataloader_persistent_workers`: False
|
283 |
+
- `skip_memory_metrics`: True
|
284 |
+
- `use_legacy_prediction_loop`: False
|
285 |
+
- `push_to_hub`: False
|
286 |
+
- `resume_from_checkpoint`: None
|
287 |
+
- `hub_model_id`: None
|
288 |
+
- `hub_strategy`: every_save
|
289 |
+
- `hub_private_repo`: False
|
290 |
+
- `hub_always_push`: False
|
291 |
+
- `gradient_checkpointing`: False
|
292 |
+
- `gradient_checkpointing_kwargs`: None
|
293 |
+
- `include_inputs_for_metrics`: False
|
294 |
+
- `eval_do_concat_batches`: True
|
295 |
+
- `fp16_backend`: auto
|
296 |
+
- `push_to_hub_model_id`: None
|
297 |
+
- `push_to_hub_organization`: None
|
298 |
+
- `mp_parameters`:
|
299 |
+
- `auto_find_batch_size`: False
|
300 |
+
- `full_determinism`: False
|
301 |
+
- `torchdynamo`: None
|
302 |
+
- `ray_scope`: last
|
303 |
+
- `ddp_timeout`: 1800
|
304 |
+
- `torch_compile`: False
|
305 |
+
- `torch_compile_backend`: None
|
306 |
+
- `torch_compile_mode`: None
|
307 |
+
- `dispatch_batches`: None
|
308 |
+
- `split_batches`: None
|
309 |
+
- `include_tokens_per_second`: False
|
310 |
+
- `include_num_input_tokens_seen`: False
|
311 |
+
- `neftune_noise_alpha`: None
|
312 |
+
- `optim_target_modules`: None
|
313 |
+
- `batch_eval_metrics`: False
|
314 |
+
- `eval_on_start`: False
|
315 |
+
- `eval_use_gather_object`: False
|
316 |
+
- `batch_sampler`: no_duplicates
|
317 |
+
- `multi_dataset_batch_sampler`: proportional
|
318 |
+
|
319 |
+
</details>
|
320 |
+
|
321 |
+
### Training Logs
|
322 |
+
<details><summary>Click to expand</summary>
|
323 |
+
|
324 |
+
| Epoch | Step | Training Loss | loss |
|
325 |
+
|:-------:|:----:|:-------------:|:------:|
|
326 |
+
| 0.1389 | 50 | 0.955 | 0.8155 |
|
327 |
+
| 0.2778 | 100 | 0.8643 | 0.6782 |
|
328 |
+
| 0.4167 | 150 | 0.6977 | 0.5452 |
|
329 |
+
| 0.5556 | 200 | 0.5738 | 0.4514 |
|
330 |
+
| 0.6944 | 250 | 0.3365 | 0.5229 |
|
331 |
+
| 0.8333 | 300 | 0.3888 | 0.4742 |
|
332 |
+
| 0.9722 | 350 | 0.4754 | 0.3900 |
|
333 |
+
| 1.1111 | 400 | 0.4109 | 0.4337 |
|
334 |
+
| 1.25 | 450 | 0.3081 | 0.3950 |
|
335 |
+
| 1.3889 | 500 | 0.3282 | 0.3345 |
|
336 |
+
| 1.5278 | 550 | 0.2371 | 0.3538 |
|
337 |
+
| 1.6667 | 600 | 0.1282 | 0.4055 |
|
338 |
+
| 1.8056 | 650 | 0.1091 | 0.5044 |
|
339 |
+
| 1.9444 | 700 | 0.2137 | 0.4423 |
|
340 |
+
| 2.0833 | 750 | 0.1169 | 0.4840 |
|
341 |
+
| 2.2222 | 800 | 0.1076 | 0.4867 |
|
342 |
+
| 2.3611 | 850 | 0.1669 | 0.4859 |
|
343 |
+
| 2.5 | 900 | 0.074 | 0.4873 |
|
344 |
+
| 2.6389 | 950 | 0.0519 | 0.4409 |
|
345 |
+
| 2.7778 | 1000 | 0.0257 | 0.4604 |
|
346 |
+
| 2.9167 | 1050 | 0.0749 | 0.4678 |
|
347 |
+
| 3.0556 | 1100 | 0.0393 | 0.4564 |
|
348 |
+
| 3.1944 | 1150 | 0.0454 | 0.4301 |
|
349 |
+
| 3.3333 | 1200 | 0.062 | 0.4882 |
|
350 |
+
| 3.4722 | 1250 | 0.0645 | 0.4434 |
|
351 |
+
| 3.6111 | 1300 | 0.0115 | 0.4296 |
|
352 |
+
| 3.75 | 1350 | 0.0172 | 0.4398 |
|
353 |
+
| 3.8889 | 1400 | 0.0429 | 0.4396 |
|
354 |
+
| 4.0278 | 1450 | 0.0115 | 0.4482 |
|
355 |
+
| 4.1667 | 1500 | 0.0141 | 0.4597 |
|
356 |
+
| 4.3056 | 1550 | 0.0032 | 0.4776 |
|
357 |
+
| 4.4444 | 1600 | 0.0288 | 0.4693 |
|
358 |
+
| 4.5833 | 1650 | 0.006 | 0.4990 |
|
359 |
+
| 4.7222 | 1700 | 0.0222 | 0.4693 |
|
360 |
+
| 4.8611 | 1750 | 0.0016 | 0.4755 |
|
361 |
+
| 5.0 | 1800 | 0.0016 | 0.4367 |
|
362 |
+
| 5.1389 | 1850 | 0.0084 | 0.3789 |
|
363 |
+
| 5.2778 | 1900 | 0.0013 | 0.3689 |
|
364 |
+
| 5.4167 | 1950 | 0.0554 | 0.3591 |
|
365 |
+
| 5.5556 | 2000 | 0.0022 | 0.3691 |
|
366 |
+
| 5.6944 | 2050 | 0.0019 | 0.3776 |
|
367 |
+
| 5.8333 | 2100 | 0.0008 | 0.3802 |
|
368 |
+
| 5.9722 | 2150 | 0.0006 | 0.3799 |
|
369 |
+
| 6.1111 | 2200 | 0.0007 | 0.3688 |
|
370 |
+
| 6.25 | 2250 | 0.0003 | 0.3635 |
|
371 |
+
| 6.3889 | 2300 | 0.0125 | 0.3526 |
|
372 |
+
| 6.5278 | 2350 | 0.0034 | 0.3338 |
|
373 |
+
| 6.6667 | 2400 | 0.0003 | 0.3482 |
|
374 |
+
| 6.8056 | 2450 | 0.0149 | 0.3730 |
|
375 |
+
| 6.9444 | 2500 | 0.0004 | 0.3932 |
|
376 |
+
| 7.0833 | 2550 | 0.0003 | 0.3977 |
|
377 |
+
| 7.2222 | 2600 | 0.0007 | 0.3915 |
|
378 |
+
| 7.3611 | 2650 | 0.0112 | 0.3923 |
|
379 |
+
| 7.5 | 2700 | 0.0006 | 0.3938 |
|
380 |
+
| 7.6389 | 2750 | 0.0002 | 0.3986 |
|
381 |
+
| 7.7778 | 2800 | 0.0005 | 0.3946 |
|
382 |
+
| 7.9167 | 2850 | 0.0003 | 0.3944 |
|
383 |
+
| 8.0556 | 2900 | 0.0002 | 0.3996 |
|
384 |
+
| 8.1944 | 2950 | 0.0001 | 0.4032 |
|
385 |
+
| 8.3333 | 3000 | 0.0001 | 0.4018 |
|
386 |
+
| 8.4722 | 3050 | 0.0119 | 0.3811 |
|
387 |
+
| 8.6111 | 3100 | 0.0001 | 0.3826 |
|
388 |
+
| 8.75 | 3150 | 0.0001 | 0.3844 |
|
389 |
+
| 8.8889 | 3200 | 0.0002 | 0.3893 |
|
390 |
+
| 9.0278 | 3250 | 0.0001 | 0.3942 |
|
391 |
+
| 9.1667 | 3300 | 0.0001 | 0.3963 |
|
392 |
+
| 9.3056 | 3350 | 0.0001 | 0.3965 |
|
393 |
+
| 9.4444 | 3400 | 0.0144 | 0.3766 |
|
394 |
+
| 9.5833 | 3450 | 0.0002 | 0.3792 |
|
395 |
+
| 9.7222 | 3500 | 0.0001 | 0.3830 |
|
396 |
+
| 9.8611 | 3550 | 0.0001 | 0.3870 |
|
397 |
+
| 10.0 | 3600 | 0.0002 | 0.3909 |
|
398 |
+
| 10.1389 | 3650 | 0.0001 | 0.3939 |
|
399 |
+
| 10.2778 | 3700 | 0.0001 | 0.3943 |
|
400 |
+
| 10.4167 | 3750 | 0.0103 | 0.3896 |
|
401 |
+
| 10.5556 | 3800 | 0.0001 | 0.3906 |
|
402 |
+
| 10.6944 | 3850 | 0.0001 | 0.3929 |
|
403 |
+
| 10.8333 | 3900 | 0.0001 | 0.3957 |
|
404 |
+
| 10.9722 | 3950 | 0.0001 | 0.3969 |
|
405 |
+
| 11.1111 | 4000 | 0.0001 | 0.4016 |
|
406 |
+
| 11.25 | 4050 | 0.0001 | 0.4012 |
|
407 |
+
| 11.3889 | 4100 | 0.0049 | 0.4058 |
|
408 |
+
| 11.5278 | 4150 | 0.0002 | 0.4117 |
|
409 |
+
| 11.6667 | 4200 | 0.0001 | 0.4121 |
|
410 |
+
| 11.8056 | 4250 | 0.0001 | 0.4131 |
|
411 |
+
| 11.9444 | 4300 | 0.0001 | 0.4140 |
|
412 |
+
| 12.0833 | 4350 | 0.0001 | 0.4145 |
|
413 |
+
| 12.2222 | 4400 | 0.0001 | 0.4145 |
|
414 |
+
| 12.3611 | 4450 | 0.0085 | 0.4135 |
|
415 |
+
| 12.5 | 4500 | 0.0001 | 0.4112 |
|
416 |
+
| 12.6389 | 4550 | 0.0001 | 0.4119 |
|
417 |
+
| 12.7778 | 4600 | 0.0001 | 0.4127 |
|
418 |
+
| 12.9167 | 4650 | 0.0001 | 0.4140 |
|
419 |
+
| 13.0556 | 4700 | 0.0001 | 0.4174 |
|
420 |
+
| 13.1944 | 4750 | 0.0001 | 0.4182 |
|
421 |
+
| 13.3333 | 4800 | 0.0001 | 0.4187 |
|
422 |
+
| 13.4722 | 4850 | 0.0051 | 0.4184 |
|
423 |
+
| 13.6111 | 4900 | 0.0001 | 0.4183 |
|
424 |
+
| 13.75 | 4950 | 0.0001 | 0.4190 |
|
425 |
+
| 13.8889 | 5000 | 0.0001 | 0.4195 |
|
426 |
+
| 14.0278 | 5050 | 0.0001 | 0.4199 |
|
427 |
+
| 14.1667 | 5100 | 0.0002 | 0.4177 |
|
428 |
+
| 14.3056 | 5150 | 0.0001 | 0.4177 |
|
429 |
+
| 14.4444 | 5200 | 0.0066 | 0.4153 |
|
430 |
+
| 14.5833 | 5250 | 0.0001 | 0.4155 |
|
431 |
+
| 14.7222 | 5300 | 0.0001 | 0.4155 |
|
432 |
+
| 14.8611 | 5350 | 0.0001 | 0.4155 |
|
433 |
+
| 15.0 | 5400 | 0.0001 | 0.4156 |
|
434 |
+
|
435 |
+
</details>
|
436 |
+
|
437 |
+
### Framework Versions
|
438 |
+
- Python: 3.12.6
|
439 |
+
- Sentence Transformers: 3.1.0
|
440 |
+
- Transformers: 4.44.2
|
441 |
+
- PyTorch: 2.4.1+cpu
|
442 |
+
- Accelerate: 0.34.2
|
443 |
+
- Datasets: 3.0.0
|
444 |
+
- Tokenizers: 0.19.1
|
445 |
+
|
446 |
+
## Citation
|
447 |
+
|
448 |
+
### BibTeX
|
449 |
+
|
450 |
+
#### Sentence Transformers
|
451 |
+
```bibtex
|
452 |
+
@inproceedings{reimers-2019-sentence-bert,
|
453 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
454 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
455 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
456 |
+
month = "11",
|
457 |
+
year = "2019",
|
458 |
+
publisher = "Association for Computational Linguistics",
|
459 |
+
url = "https://arxiv.org/abs/1908.10084",
|
460 |
+
}
|
461 |
+
```
|
462 |
+
|
463 |
+
#### MultipleNegativesRankingLoss
|
464 |
+
```bibtex
|
465 |
+
@misc{henderson2017efficient,
|
466 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
467 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
468 |
+
year={2017},
|
469 |
+
eprint={1705.00652},
|
470 |
+
archivePrefix={arXiv},
|
471 |
+
primaryClass={cs.CL}
|
472 |
+
}
|
473 |
+
```
|
474 |
+
|
475 |
+
<!--
|
476 |
+
## Glossary
|
477 |
+
|
478 |
+
*Clearly define terms in order to be accessible across audiences.*
|
479 |
+
-->
|
480 |
+
|
481 |
+
<!--
|
482 |
+
## Model Card Authors
|
483 |
+
|
484 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
485 |
+
-->
|
486 |
+
|
487 |
+
<!--
|
488 |
+
## Model Card Contact
|
489 |
+
|
490 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
491 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "thenlper/gte-base",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 12,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.44.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.0",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.4.1+cpu"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:264a678170ba79637dc8469c57ae56711d07f3461e2c561d159f1c66c2c8f283
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 128,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "BertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|