neel2306 commited on
Commit
865a386
·
verified ·
1 Parent(s): 5d9bf42

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,491 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: thenlper/gte-base
3
+ library_name: sentence-transformers
4
+ pipeline_tag: sentence-similarity
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:1439
11
+ - loss:MultipleNegativesRankingLoss
12
+ widget:
13
+ - source_sentence: Motors and Generators (manufacturing)
14
+ sentences:
15
+ - Generator components
16
+ - Hydraulic pumps
17
+ - Positive displacement pumps for oil transport
18
+ - source_sentence: Heat Exchangers and Boilers Manufacturing
19
+ sentences:
20
+ - Insulation materials for boilers
21
+ - Water heaters
22
+ - Lubricants for roller bearings
23
+ - source_sentence: Industrial Molds And Mold Boxes
24
+ sentences:
25
+ - Logistics costs for machinery distribution
26
+ - Mold release agents
27
+ - Mold design and engineering services
28
+ - source_sentence: Industrial Patterns
29
+ sentences:
30
+ - Group I base oils
31
+ - Pattern making services
32
+ - Design patterns in software
33
+ - source_sentence: Lubricating And Similar Oils Not From Petroleum Refineries
34
+ sentences:
35
+ - Crude oil extraction costs
36
+ - Synthetic lubricants
37
+ - Crude oil
38
+ ---
39
+
40
+ # SentenceTransformer based on thenlper/gte-base
41
+
42
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [thenlper/gte-base](https://huggingface.co/thenlper/gte-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** Sentence Transformer
48
+ - **Base model:** [thenlper/gte-base](https://huggingface.co/thenlper/gte-base) <!-- at revision 5e95d41db6721e7cbd5006e99c7508f0083223d6 -->
49
+ - **Maximum Sequence Length:** 512 tokens
50
+ - **Output Dimensionality:** 768 tokens
51
+ - **Similarity Function:** Cosine Similarity
52
+ <!-- - **Training Dataset:** Unknown -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
59
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
60
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
61
+
62
+ ### Full Model Architecture
63
+
64
+ ```
65
+ SentenceTransformer(
66
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
67
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
68
+ (2): Normalize()
69
+ )
70
+ ```
71
+
72
+ ## Usage
73
+
74
+ ### Direct Usage (Sentence Transformers)
75
+
76
+ First install the Sentence Transformers library:
77
+
78
+ ```bash
79
+ pip install -U sentence-transformers
80
+ ```
81
+
82
+ Then you can load this model and run inference.
83
+ ```python
84
+ from sentence_transformers import SentenceTransformer
85
+
86
+ # Download from the 🤗 Hub
87
+ model = SentenceTransformer("neel2306/RE-cp-costgen")
88
+ # Run inference
89
+ sentences = [
90
+ 'Lubricating And Similar Oils Not From Petroleum Refineries',
91
+ 'Synthetic lubricants',
92
+ 'Crude oil',
93
+ ]
94
+ embeddings = model.encode(sentences)
95
+ print(embeddings.shape)
96
+ # [3, 768]
97
+
98
+ # Get the similarity scores for the embeddings
99
+ similarities = model.similarity(embeddings, embeddings)
100
+ print(similarities.shape)
101
+ # [3, 3]
102
+ ```
103
+
104
+ <!--
105
+ ### Direct Usage (Transformers)
106
+
107
+ <details><summary>Click to see the direct usage in Transformers</summary>
108
+
109
+ </details>
110
+ -->
111
+
112
+ <!--
113
+ ### Downstream Usage (Sentence Transformers)
114
+
115
+ You can finetune this model on your own dataset.
116
+
117
+ <details><summary>Click to expand</summary>
118
+
119
+ </details>
120
+ -->
121
+
122
+ <!--
123
+ ### Out-of-Scope Use
124
+
125
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
126
+ -->
127
+
128
+ <!--
129
+ ## Bias, Risks and Limitations
130
+
131
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
132
+ -->
133
+
134
+ <!--
135
+ ### Recommendations
136
+
137
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
138
+ -->
139
+
140
+ ## Training Details
141
+
142
+ ### Training Dataset
143
+
144
+ #### Unnamed Dataset
145
+
146
+
147
+ * Size: 1,439 training samples
148
+ * Columns: <code>anchor</code>, <code>positives</code>, and <code>negatives</code>
149
+ * Approximate statistics based on the first 1000 samples:
150
+ | | anchor | positives | negatives |
151
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
152
+ | type | string | string | string |
153
+ | details | <ul><li>min: 3 tokens</li><li>mean: 9.72 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.96 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.0 tokens</li><li>max: 11 tokens</li></ul> |
154
+ * Samples:
155
+ | anchor | positives | negatives |
156
+ |:------------------------------------------------------------------------------|:-----------------------------------------------------|:------------------------------------------------------|
157
+ | <code>Other Metal Valve and Pipe Fitting Manufacturing</code> | <code>Pipe fittings</code> | <code>Rubber gaskets</code> |
158
+ | <code>Fluid Power Pump and Motor Manufacturing: Miscellaneous Receipts</code> | <code>Pneumatic motors</code> | <code>Gear pumps</code> |
159
+ | <code>Maintenance and Repair for Commercial Machinery</code> | <code>Labor costs for maintenance technicians</code> | <code>Office supplies for administrative tasks</code> |
160
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
161
+ ```json
162
+ {
163
+ "scale": 20.0,
164
+ "similarity_fct": "cos_sim"
165
+ }
166
+ ```
167
+
168
+ ### Evaluation Dataset
169
+
170
+ #### Unnamed Dataset
171
+
172
+
173
+ * Size: 480 evaluation samples
174
+ * Columns: <code>anchor</code>, <code>positives</code>, and <code>negatives</code>
175
+ * Approximate statistics based on the first 480 samples:
176
+ | | anchor | positives | negatives |
177
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
178
+ | type | string | string | string |
179
+ | details | <ul><li>min: 3 tokens</li><li>mean: 10.4 tokens</li><li>max: 34 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.97 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.09 tokens</li><li>max: 14 tokens</li></ul> |
180
+ * Samples:
181
+ | anchor | positives | negatives |
182
+ |:-----------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|:-------------------------------------------|
183
+ | <code>Other Metal Ore Mining</code> | <code>Aluminum ore processing</code> | <code>Metal alloy production</code> |
184
+ | <code>Bituminous Coal And Lignite Surface Mining: Processed Bituminous Coal And Lignite From Surface Operations</code> | <code>Processed Bituminous Coal</code> | <code>Anthracite Coal</code> |
185
+ | <code>Roofing Contractors</code> | <code>Labor costs for roofing installation</code> | <code>Foundation construction costs</code> |
186
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
187
+ ```json
188
+ {
189
+ "scale": 20.0,
190
+ "similarity_fct": "cos_sim"
191
+ }
192
+ ```
193
+
194
+ ### Training Hyperparameters
195
+ #### Non-Default Hyperparameters
196
+
197
+ - `eval_strategy`: steps
198
+ - `per_device_train_batch_size`: 4
199
+ - `per_device_eval_batch_size`: 4
200
+ - `num_train_epochs`: 15
201
+ - `warmup_ratio`: 0.1
202
+ - `batch_sampler`: no_duplicates
203
+
204
+ #### All Hyperparameters
205
+ <details><summary>Click to expand</summary>
206
+
207
+ - `overwrite_output_dir`: False
208
+ - `do_predict`: False
209
+ - `eval_strategy`: steps
210
+ - `prediction_loss_only`: True
211
+ - `per_device_train_batch_size`: 4
212
+ - `per_device_eval_batch_size`: 4
213
+ - `per_gpu_train_batch_size`: None
214
+ - `per_gpu_eval_batch_size`: None
215
+ - `gradient_accumulation_steps`: 1
216
+ - `eval_accumulation_steps`: None
217
+ - `torch_empty_cache_steps`: None
218
+ - `learning_rate`: 5e-05
219
+ - `weight_decay`: 0.0
220
+ - `adam_beta1`: 0.9
221
+ - `adam_beta2`: 0.999
222
+ - `adam_epsilon`: 1e-08
223
+ - `max_grad_norm`: 1.0
224
+ - `num_train_epochs`: 15
225
+ - `max_steps`: -1
226
+ - `lr_scheduler_type`: linear
227
+ - `lr_scheduler_kwargs`: {}
228
+ - `warmup_ratio`: 0.1
229
+ - `warmup_steps`: 0
230
+ - `log_level`: passive
231
+ - `log_level_replica`: warning
232
+ - `log_on_each_node`: True
233
+ - `logging_nan_inf_filter`: True
234
+ - `save_safetensors`: True
235
+ - `save_on_each_node`: False
236
+ - `save_only_model`: False
237
+ - `restore_callback_states_from_checkpoint`: False
238
+ - `no_cuda`: False
239
+ - `use_cpu`: False
240
+ - `use_mps_device`: False
241
+ - `seed`: 42
242
+ - `data_seed`: None
243
+ - `jit_mode_eval`: False
244
+ - `use_ipex`: False
245
+ - `bf16`: False
246
+ - `fp16`: False
247
+ - `fp16_opt_level`: O1
248
+ - `half_precision_backend`: auto
249
+ - `bf16_full_eval`: False
250
+ - `fp16_full_eval`: False
251
+ - `tf32`: None
252
+ - `local_rank`: 0
253
+ - `ddp_backend`: None
254
+ - `tpu_num_cores`: None
255
+ - `tpu_metrics_debug`: False
256
+ - `debug`: []
257
+ - `dataloader_drop_last`: False
258
+ - `dataloader_num_workers`: 0
259
+ - `dataloader_prefetch_factor`: None
260
+ - `past_index`: -1
261
+ - `disable_tqdm`: False
262
+ - `remove_unused_columns`: True
263
+ - `label_names`: None
264
+ - `load_best_model_at_end`: False
265
+ - `ignore_data_skip`: False
266
+ - `fsdp`: []
267
+ - `fsdp_min_num_params`: 0
268
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
269
+ - `fsdp_transformer_layer_cls_to_wrap`: None
270
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
271
+ - `deepspeed`: None
272
+ - `label_smoothing_factor`: 0.0
273
+ - `optim`: adamw_torch
274
+ - `optim_args`: None
275
+ - `adafactor`: False
276
+ - `group_by_length`: False
277
+ - `length_column_name`: length
278
+ - `ddp_find_unused_parameters`: None
279
+ - `ddp_bucket_cap_mb`: None
280
+ - `ddp_broadcast_buffers`: False
281
+ - `dataloader_pin_memory`: True
282
+ - `dataloader_persistent_workers`: False
283
+ - `skip_memory_metrics`: True
284
+ - `use_legacy_prediction_loop`: False
285
+ - `push_to_hub`: False
286
+ - `resume_from_checkpoint`: None
287
+ - `hub_model_id`: None
288
+ - `hub_strategy`: every_save
289
+ - `hub_private_repo`: False
290
+ - `hub_always_push`: False
291
+ - `gradient_checkpointing`: False
292
+ - `gradient_checkpointing_kwargs`: None
293
+ - `include_inputs_for_metrics`: False
294
+ - `eval_do_concat_batches`: True
295
+ - `fp16_backend`: auto
296
+ - `push_to_hub_model_id`: None
297
+ - `push_to_hub_organization`: None
298
+ - `mp_parameters`:
299
+ - `auto_find_batch_size`: False
300
+ - `full_determinism`: False
301
+ - `torchdynamo`: None
302
+ - `ray_scope`: last
303
+ - `ddp_timeout`: 1800
304
+ - `torch_compile`: False
305
+ - `torch_compile_backend`: None
306
+ - `torch_compile_mode`: None
307
+ - `dispatch_batches`: None
308
+ - `split_batches`: None
309
+ - `include_tokens_per_second`: False
310
+ - `include_num_input_tokens_seen`: False
311
+ - `neftune_noise_alpha`: None
312
+ - `optim_target_modules`: None
313
+ - `batch_eval_metrics`: False
314
+ - `eval_on_start`: False
315
+ - `eval_use_gather_object`: False
316
+ - `batch_sampler`: no_duplicates
317
+ - `multi_dataset_batch_sampler`: proportional
318
+
319
+ </details>
320
+
321
+ ### Training Logs
322
+ <details><summary>Click to expand</summary>
323
+
324
+ | Epoch | Step | Training Loss | loss |
325
+ |:-------:|:----:|:-------------:|:------:|
326
+ | 0.1389 | 50 | 0.955 | 0.8155 |
327
+ | 0.2778 | 100 | 0.8643 | 0.6782 |
328
+ | 0.4167 | 150 | 0.6977 | 0.5452 |
329
+ | 0.5556 | 200 | 0.5738 | 0.4514 |
330
+ | 0.6944 | 250 | 0.3365 | 0.5229 |
331
+ | 0.8333 | 300 | 0.3888 | 0.4742 |
332
+ | 0.9722 | 350 | 0.4754 | 0.3900 |
333
+ | 1.1111 | 400 | 0.4109 | 0.4337 |
334
+ | 1.25 | 450 | 0.3081 | 0.3950 |
335
+ | 1.3889 | 500 | 0.3282 | 0.3345 |
336
+ | 1.5278 | 550 | 0.2371 | 0.3538 |
337
+ | 1.6667 | 600 | 0.1282 | 0.4055 |
338
+ | 1.8056 | 650 | 0.1091 | 0.5044 |
339
+ | 1.9444 | 700 | 0.2137 | 0.4423 |
340
+ | 2.0833 | 750 | 0.1169 | 0.4840 |
341
+ | 2.2222 | 800 | 0.1076 | 0.4867 |
342
+ | 2.3611 | 850 | 0.1669 | 0.4859 |
343
+ | 2.5 | 900 | 0.074 | 0.4873 |
344
+ | 2.6389 | 950 | 0.0519 | 0.4409 |
345
+ | 2.7778 | 1000 | 0.0257 | 0.4604 |
346
+ | 2.9167 | 1050 | 0.0749 | 0.4678 |
347
+ | 3.0556 | 1100 | 0.0393 | 0.4564 |
348
+ | 3.1944 | 1150 | 0.0454 | 0.4301 |
349
+ | 3.3333 | 1200 | 0.062 | 0.4882 |
350
+ | 3.4722 | 1250 | 0.0645 | 0.4434 |
351
+ | 3.6111 | 1300 | 0.0115 | 0.4296 |
352
+ | 3.75 | 1350 | 0.0172 | 0.4398 |
353
+ | 3.8889 | 1400 | 0.0429 | 0.4396 |
354
+ | 4.0278 | 1450 | 0.0115 | 0.4482 |
355
+ | 4.1667 | 1500 | 0.0141 | 0.4597 |
356
+ | 4.3056 | 1550 | 0.0032 | 0.4776 |
357
+ | 4.4444 | 1600 | 0.0288 | 0.4693 |
358
+ | 4.5833 | 1650 | 0.006 | 0.4990 |
359
+ | 4.7222 | 1700 | 0.0222 | 0.4693 |
360
+ | 4.8611 | 1750 | 0.0016 | 0.4755 |
361
+ | 5.0 | 1800 | 0.0016 | 0.4367 |
362
+ | 5.1389 | 1850 | 0.0084 | 0.3789 |
363
+ | 5.2778 | 1900 | 0.0013 | 0.3689 |
364
+ | 5.4167 | 1950 | 0.0554 | 0.3591 |
365
+ | 5.5556 | 2000 | 0.0022 | 0.3691 |
366
+ | 5.6944 | 2050 | 0.0019 | 0.3776 |
367
+ | 5.8333 | 2100 | 0.0008 | 0.3802 |
368
+ | 5.9722 | 2150 | 0.0006 | 0.3799 |
369
+ | 6.1111 | 2200 | 0.0007 | 0.3688 |
370
+ | 6.25 | 2250 | 0.0003 | 0.3635 |
371
+ | 6.3889 | 2300 | 0.0125 | 0.3526 |
372
+ | 6.5278 | 2350 | 0.0034 | 0.3338 |
373
+ | 6.6667 | 2400 | 0.0003 | 0.3482 |
374
+ | 6.8056 | 2450 | 0.0149 | 0.3730 |
375
+ | 6.9444 | 2500 | 0.0004 | 0.3932 |
376
+ | 7.0833 | 2550 | 0.0003 | 0.3977 |
377
+ | 7.2222 | 2600 | 0.0007 | 0.3915 |
378
+ | 7.3611 | 2650 | 0.0112 | 0.3923 |
379
+ | 7.5 | 2700 | 0.0006 | 0.3938 |
380
+ | 7.6389 | 2750 | 0.0002 | 0.3986 |
381
+ | 7.7778 | 2800 | 0.0005 | 0.3946 |
382
+ | 7.9167 | 2850 | 0.0003 | 0.3944 |
383
+ | 8.0556 | 2900 | 0.0002 | 0.3996 |
384
+ | 8.1944 | 2950 | 0.0001 | 0.4032 |
385
+ | 8.3333 | 3000 | 0.0001 | 0.4018 |
386
+ | 8.4722 | 3050 | 0.0119 | 0.3811 |
387
+ | 8.6111 | 3100 | 0.0001 | 0.3826 |
388
+ | 8.75 | 3150 | 0.0001 | 0.3844 |
389
+ | 8.8889 | 3200 | 0.0002 | 0.3893 |
390
+ | 9.0278 | 3250 | 0.0001 | 0.3942 |
391
+ | 9.1667 | 3300 | 0.0001 | 0.3963 |
392
+ | 9.3056 | 3350 | 0.0001 | 0.3965 |
393
+ | 9.4444 | 3400 | 0.0144 | 0.3766 |
394
+ | 9.5833 | 3450 | 0.0002 | 0.3792 |
395
+ | 9.7222 | 3500 | 0.0001 | 0.3830 |
396
+ | 9.8611 | 3550 | 0.0001 | 0.3870 |
397
+ | 10.0 | 3600 | 0.0002 | 0.3909 |
398
+ | 10.1389 | 3650 | 0.0001 | 0.3939 |
399
+ | 10.2778 | 3700 | 0.0001 | 0.3943 |
400
+ | 10.4167 | 3750 | 0.0103 | 0.3896 |
401
+ | 10.5556 | 3800 | 0.0001 | 0.3906 |
402
+ | 10.6944 | 3850 | 0.0001 | 0.3929 |
403
+ | 10.8333 | 3900 | 0.0001 | 0.3957 |
404
+ | 10.9722 | 3950 | 0.0001 | 0.3969 |
405
+ | 11.1111 | 4000 | 0.0001 | 0.4016 |
406
+ | 11.25 | 4050 | 0.0001 | 0.4012 |
407
+ | 11.3889 | 4100 | 0.0049 | 0.4058 |
408
+ | 11.5278 | 4150 | 0.0002 | 0.4117 |
409
+ | 11.6667 | 4200 | 0.0001 | 0.4121 |
410
+ | 11.8056 | 4250 | 0.0001 | 0.4131 |
411
+ | 11.9444 | 4300 | 0.0001 | 0.4140 |
412
+ | 12.0833 | 4350 | 0.0001 | 0.4145 |
413
+ | 12.2222 | 4400 | 0.0001 | 0.4145 |
414
+ | 12.3611 | 4450 | 0.0085 | 0.4135 |
415
+ | 12.5 | 4500 | 0.0001 | 0.4112 |
416
+ | 12.6389 | 4550 | 0.0001 | 0.4119 |
417
+ | 12.7778 | 4600 | 0.0001 | 0.4127 |
418
+ | 12.9167 | 4650 | 0.0001 | 0.4140 |
419
+ | 13.0556 | 4700 | 0.0001 | 0.4174 |
420
+ | 13.1944 | 4750 | 0.0001 | 0.4182 |
421
+ | 13.3333 | 4800 | 0.0001 | 0.4187 |
422
+ | 13.4722 | 4850 | 0.0051 | 0.4184 |
423
+ | 13.6111 | 4900 | 0.0001 | 0.4183 |
424
+ | 13.75 | 4950 | 0.0001 | 0.4190 |
425
+ | 13.8889 | 5000 | 0.0001 | 0.4195 |
426
+ | 14.0278 | 5050 | 0.0001 | 0.4199 |
427
+ | 14.1667 | 5100 | 0.0002 | 0.4177 |
428
+ | 14.3056 | 5150 | 0.0001 | 0.4177 |
429
+ | 14.4444 | 5200 | 0.0066 | 0.4153 |
430
+ | 14.5833 | 5250 | 0.0001 | 0.4155 |
431
+ | 14.7222 | 5300 | 0.0001 | 0.4155 |
432
+ | 14.8611 | 5350 | 0.0001 | 0.4155 |
433
+ | 15.0 | 5400 | 0.0001 | 0.4156 |
434
+
435
+ </details>
436
+
437
+ ### Framework Versions
438
+ - Python: 3.12.6
439
+ - Sentence Transformers: 3.1.0
440
+ - Transformers: 4.44.2
441
+ - PyTorch: 2.4.1+cpu
442
+ - Accelerate: 0.34.2
443
+ - Datasets: 3.0.0
444
+ - Tokenizers: 0.19.1
445
+
446
+ ## Citation
447
+
448
+ ### BibTeX
449
+
450
+ #### Sentence Transformers
451
+ ```bibtex
452
+ @inproceedings{reimers-2019-sentence-bert,
453
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
454
+ author = "Reimers, Nils and Gurevych, Iryna",
455
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
456
+ month = "11",
457
+ year = "2019",
458
+ publisher = "Association for Computational Linguistics",
459
+ url = "https://arxiv.org/abs/1908.10084",
460
+ }
461
+ ```
462
+
463
+ #### MultipleNegativesRankingLoss
464
+ ```bibtex
465
+ @misc{henderson2017efficient,
466
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
467
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
468
+ year={2017},
469
+ eprint={1705.00652},
470
+ archivePrefix={arXiv},
471
+ primaryClass={cs.CL}
472
+ }
473
+ ```
474
+
475
+ <!--
476
+ ## Glossary
477
+
478
+ *Clearly define terms in order to be accessible across audiences.*
479
+ -->
480
+
481
+ <!--
482
+ ## Model Card Authors
483
+
484
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Contact
489
+
490
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
491
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "thenlper/gte-base",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cpu"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264a678170ba79637dc8469c57ae56711d07f3461e2c561d159f1c66c2c8f283
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 128,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff