Model save
Browse files
README.md
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: apache-2.0
|
4 |
+
base_model: google/vit-base-patch16-224
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- webdataset
|
9 |
+
metrics:
|
10 |
+
- accuracy
|
11 |
+
- f1
|
12 |
+
- precision
|
13 |
+
- recall
|
14 |
+
model-index:
|
15 |
+
- name: frost-vision-v2-google_vit-base-patch16-224-v2024-11-09
|
16 |
+
results:
|
17 |
+
- task:
|
18 |
+
name: Image Classification
|
19 |
+
type: image-classification
|
20 |
+
dataset:
|
21 |
+
name: webdataset
|
22 |
+
type: webdataset
|
23 |
+
config: default
|
24 |
+
split: train
|
25 |
+
args: default
|
26 |
+
metrics:
|
27 |
+
- name: Accuracy
|
28 |
+
type: accuracy
|
29 |
+
value: 0.9401408450704225
|
30 |
+
- name: F1
|
31 |
+
type: f1
|
32 |
+
value: 0.8473967684021544
|
33 |
+
- name: Precision
|
34 |
+
type: precision
|
35 |
+
value: 0.8566243194192378
|
36 |
+
- name: Recall
|
37 |
+
type: recall
|
38 |
+
value: 0.8383658969804618
|
39 |
+
---
|
40 |
+
|
41 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
42 |
+
should probably proofread and complete it, then remove this comment. -->
|
43 |
+
|
44 |
+
# frost-vision-v2-google_vit-base-patch16-224-v2024-11-09
|
45 |
+
|
46 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the webdataset dataset.
|
47 |
+
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.2031
|
49 |
+
- Accuracy: 0.9401
|
50 |
+
- F1: 0.8474
|
51 |
+
- Precision: 0.8566
|
52 |
+
- Recall: 0.8384
|
53 |
+
|
54 |
+
## Model description
|
55 |
+
|
56 |
+
More information needed
|
57 |
+
|
58 |
+
## Intended uses & limitations
|
59 |
+
|
60 |
+
More information needed
|
61 |
+
|
62 |
+
## Training and evaluation data
|
63 |
+
|
64 |
+
More information needed
|
65 |
+
|
66 |
+
## Training procedure
|
67 |
+
|
68 |
+
### Training hyperparameters
|
69 |
+
|
70 |
+
The following hyperparameters were used during training:
|
71 |
+
- learning_rate: 0.0002
|
72 |
+
- train_batch_size: 16
|
73 |
+
- eval_batch_size: 8
|
74 |
+
- seed: 42
|
75 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
+
- lr_scheduler_type: linear
|
77 |
+
- lr_scheduler_warmup_ratio: 0.1
|
78 |
+
- num_epochs: 30
|
79 |
+
- mixed_precision_training: Native AMP
|
80 |
+
|
81 |
+
### Training results
|
82 |
+
|
83 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
84 |
+
|:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
85 |
+
| 0.2067 | 1.4085 | 100 | 0.2229 | 0.9155 | 0.7736 | 0.8249 | 0.7282 |
|
86 |
+
| 0.1989 | 2.8169 | 200 | 0.2252 | 0.9102 | 0.7650 | 0.7950 | 0.7371 |
|
87 |
+
| 0.1364 | 4.2254 | 300 | 0.1834 | 0.9268 | 0.8163 | 0.8120 | 0.8206 |
|
88 |
+
| 0.1368 | 5.6338 | 400 | 0.1874 | 0.9268 | 0.7981 | 0.8801 | 0.7300 |
|
89 |
+
| 0.1197 | 7.0423 | 500 | 0.1769 | 0.9317 | 0.8268 | 0.8312 | 0.8224 |
|
90 |
+
| 0.099 | 8.4507 | 600 | 0.1841 | 0.9313 | 0.8189 | 0.8580 | 0.7833 |
|
91 |
+
| 0.0748 | 9.8592 | 700 | 0.1739 | 0.9359 | 0.8366 | 0.8457 | 0.8277 |
|
92 |
+
| 0.0706 | 11.2676 | 800 | 0.1762 | 0.9373 | 0.8399 | 0.8506 | 0.8295 |
|
93 |
+
| 0.0865 | 12.6761 | 900 | 0.1766 | 0.9408 | 0.8486 | 0.8611 | 0.8366 |
|
94 |
+
| 0.061 | 14.0845 | 1000 | 0.1852 | 0.9380 | 0.8445 | 0.8401 | 0.8490 |
|
95 |
+
| 0.0449 | 15.4930 | 1100 | 0.1795 | 0.9401 | 0.8482 | 0.8528 | 0.8437 |
|
96 |
+
| 0.0488 | 16.9014 | 1200 | 0.2065 | 0.9310 | 0.8253 | 0.8283 | 0.8224 |
|
97 |
+
| 0.0483 | 18.3099 | 1300 | 0.1977 | 0.9377 | 0.8427 | 0.8434 | 0.8419 |
|
98 |
+
| 0.0317 | 19.7183 | 1400 | 0.2006 | 0.9370 | 0.8395 | 0.8478 | 0.8313 |
|
99 |
+
| 0.0411 | 21.1268 | 1500 | 0.2068 | 0.9363 | 0.8368 | 0.8498 | 0.8242 |
|
100 |
+
| 0.0512 | 22.5352 | 1600 | 0.2056 | 0.9391 | 0.8446 | 0.8545 | 0.8348 |
|
101 |
+
| 0.0329 | 23.9437 | 1700 | 0.2127 | 0.9338 | 0.8294 | 0.8479 | 0.8117 |
|
102 |
+
| 0.0197 | 25.3521 | 1800 | 0.2122 | 0.9335 | 0.8286 | 0.8463 | 0.8117 |
|
103 |
+
| 0.0316 | 26.7606 | 1900 | 0.2050 | 0.9373 | 0.8399 | 0.8506 | 0.8295 |
|
104 |
+
| 0.0133 | 28.1690 | 2000 | 0.2019 | 0.9408 | 0.8495 | 0.8571 | 0.8419 |
|
105 |
+
| 0.0181 | 29.5775 | 2100 | 0.2031 | 0.9401 | 0.8474 | 0.8566 | 0.8384 |
|
106 |
+
|
107 |
+
|
108 |
+
### Framework versions
|
109 |
+
|
110 |
+
- Transformers 4.44.2
|
111 |
+
- Pytorch 2.5.0+cu121
|
112 |
+
- Datasets 3.1.0
|
113 |
+
- Tokenizers 0.19.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 343248584
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4abbed0ebb46e4b6d1d3d29d5df27b5abc1f3b1aa63ca8f3d4ccec2fcfd98a74
|
3 |
size 343248584
|
runs/Nov09_22-10-12_70708b3edc8c/events.out.tfevents.1731190217.70708b3edc8c.599.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c9b58998f7e23cae24970ff416204ea089192357c490912c634e6ea945e0764
|
3 |
+
size 60581
|