nemik commited on
Commit
a7f3f3f
·
verified ·
1 Parent(s): d9e6ef3

Model save

Browse files
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: google/vit-base-patch16-224
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - webdataset
9
+ metrics:
10
+ - accuracy
11
+ - f1
12
+ - precision
13
+ - recall
14
+ model-index:
15
+ - name: frost-vision-v2-google_vit-base-patch16-224
16
+ results:
17
+ - task:
18
+ name: Image Classification
19
+ type: image-classification
20
+ dataset:
21
+ name: webdataset
22
+ type: webdataset
23
+ config: default
24
+ split: train
25
+ args: default
26
+ metrics:
27
+ - name: Accuracy
28
+ type: accuracy
29
+ value: 0.9423188405797102
30
+ - name: F1
31
+ type: f1
32
+ value: 0.8589652728561304
33
+ - name: Precision
34
+ type: precision
35
+ value: 0.8795355587808418
36
+ - name: Recall
37
+ type: recall
38
+ value: 0.8393351800554016
39
+ ---
40
+
41
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
42
+ should probably proofread and complete it, then remove this comment. -->
43
+
44
+ # frost-vision-v2-google_vit-base-patch16-224
45
+
46
+ This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the webdataset dataset.
47
+ It achieves the following results on the evaluation set:
48
+ - Loss: 0.1664
49
+ - Accuracy: 0.9423
50
+ - F1: 0.8590
51
+ - Precision: 0.8795
52
+ - Recall: 0.8393
53
+
54
+ ## Model description
55
+
56
+ More information needed
57
+
58
+ ## Intended uses & limitations
59
+
60
+ More information needed
61
+
62
+ ## Training and evaluation data
63
+
64
+ More information needed
65
+
66
+ ## Training procedure
67
+
68
+ ### Training hyperparameters
69
+
70
+ The following hyperparameters were used during training:
71
+ - learning_rate: 5e-05
72
+ - train_batch_size: 16
73
+ - eval_batch_size: 8
74
+ - seed: 42
75
+ - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
76
+ - lr_scheduler_type: linear
77
+ - lr_scheduler_warmup_ratio: 0.1
78
+ - num_epochs: 30
79
+ - mixed_precision_training: Native AMP
80
+
81
+ ### Training results
82
+
83
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
84
+ |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
85
+ | 0.3416 | 1.1494 | 100 | 0.3273 | 0.8771 | 0.6124 | 0.9005 | 0.4640 |
86
+ | 0.2215 | 2.2989 | 200 | 0.2187 | 0.9183 | 0.7902 | 0.8537 | 0.7355 |
87
+ | 0.1753 | 3.4483 | 300 | 0.1899 | 0.9238 | 0.8098 | 0.8472 | 0.7756 |
88
+ | 0.1656 | 4.5977 | 400 | 0.1732 | 0.9272 | 0.8175 | 0.8606 | 0.7784 |
89
+ | 0.1288 | 5.7471 | 500 | 0.1562 | 0.9359 | 0.8381 | 0.8896 | 0.7922 |
90
+ | 0.1323 | 6.8966 | 600 | 0.1597 | 0.9322 | 0.8326 | 0.8609 | 0.8061 |
91
+ | 0.1004 | 8.0460 | 700 | 0.1613 | 0.9316 | 0.8324 | 0.8542 | 0.8116 |
92
+ | 0.0956 | 9.1954 | 800 | 0.1612 | 0.9336 | 0.8368 | 0.8620 | 0.8130 |
93
+ | 0.0841 | 10.3448 | 900 | 0.1621 | 0.9345 | 0.8383 | 0.8669 | 0.8116 |
94
+ | 0.0764 | 11.4943 | 1000 | 0.1586 | 0.9359 | 0.8438 | 0.8615 | 0.8269 |
95
+ | 0.0726 | 12.6437 | 1100 | 0.1546 | 0.9420 | 0.8594 | 0.8729 | 0.8463 |
96
+ | 0.0732 | 13.7931 | 1200 | 0.1529 | 0.9409 | 0.8565 | 0.87 | 0.8435 |
97
+ | 0.0626 | 14.9425 | 1300 | 0.1589 | 0.9377 | 0.8485 | 0.8637 | 0.8338 |
98
+ | 0.0481 | 16.0920 | 1400 | 0.1612 | 0.9394 | 0.8510 | 0.8767 | 0.8269 |
99
+ | 0.0507 | 17.2414 | 1500 | 0.1679 | 0.9339 | 0.8394 | 0.8539 | 0.8255 |
100
+ | 0.0446 | 18.3908 | 1600 | 0.1623 | 0.9417 | 0.8597 | 0.8664 | 0.8532 |
101
+ | 0.0498 | 19.5402 | 1700 | 0.1625 | 0.9417 | 0.8601 | 0.8643 | 0.8560 |
102
+ | 0.0458 | 20.6897 | 1800 | 0.1601 | 0.9397 | 0.8533 | 0.8693 | 0.8380 |
103
+ | 0.0307 | 21.8391 | 1900 | 0.1626 | 0.9432 | 0.8637 | 0.8673 | 0.8601 |
104
+ | 0.0334 | 22.9885 | 2000 | 0.1621 | 0.9443 | 0.8642 | 0.8829 | 0.8463 |
105
+ | 0.0339 | 24.1379 | 2100 | 0.1680 | 0.9435 | 0.8645 | 0.8675 | 0.8615 |
106
+ | 0.0222 | 25.2874 | 2200 | 0.1656 | 0.9394 | 0.8537 | 0.8628 | 0.8449 |
107
+ | 0.026 | 26.4368 | 2300 | 0.1687 | 0.9386 | 0.8515 | 0.8612 | 0.8421 |
108
+ | 0.0353 | 27.5862 | 2400 | 0.1666 | 0.9403 | 0.8555 | 0.8665 | 0.8449 |
109
+ | 0.0294 | 28.7356 | 2500 | 0.1660 | 0.9429 | 0.8614 | 0.8755 | 0.8476 |
110
+ | 0.0243 | 29.8851 | 2600 | 0.1664 | 0.9423 | 0.8590 | 0.8795 | 0.8393 |
111
+
112
+
113
+ ### Framework versions
114
+
115
+ - Transformers 4.46.2
116
+ - Pytorch 2.5.1+cu121
117
+ - Datasets 3.1.0
118
+ - Tokenizers 0.20.3
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:121b1f6d8c28fdbed7ab48c52d7929be878d7c96fb9ffa12a6d904d8f88a825c
3
  size 343248584
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:236e1b6525cd76ec50929ad7706980cdf0bc2124f0c7df5f55f76aba3e411a3b
3
  size 343248584
runs/Nov18_05-40-36_a7bbef788e81/events.out.tfevents.1731908442.a7bbef788e81.210.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a1a684ad274fba81e7242fc5a2e04b041e62c241eac4f90b16aef9fa76f502c1
3
- size 72864
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47d8cfc534ab3d9bffe655133ca80cce4cdf92707e3402a7a675bd9a066f0b98
3
+ size 73218