Update README.md
Browse files
README.md
CHANGED
@@ -66,7 +66,9 @@ vLLM also supports OpenAI-compatible serving. See the [documentation](https://do
|
|
66 |
|
67 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
|
69 |
-
|
|
|
|
|
70 |
```bash
|
71 |
python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w4a16" --calib_size 1024 --dampening_frac 0.01 --observer mse --group_size 64
|
72 |
```
|
@@ -145,6 +147,7 @@ oneshot(
|
|
145 |
model.save_pretrained(quant_path, save_compressed=True)
|
146 |
tokenizer.save_pretrained(quant_path)
|
147 |
```
|
|
|
148 |
|
149 |
## Evaluation
|
150 |
|
@@ -203,37 +206,114 @@ evalplus.evaluate \
|
|
203 |
|
204 |
### Accuracy
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
237 |
|
238 |
## Inference Performance
|
239 |
|
|
|
66 |
|
67 |
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
|
68 |
|
69 |
+
<details>
|
70 |
+
<summary>Model Creation Code</summary>
|
71 |
+
|
72 |
```bash
|
73 |
python quantize.py --model_path ibm-granite/granite-3.1-2b-instruct --quant_path "output_dir/granite-3.1-2b-instruct-quantized.w4a16" --calib_size 1024 --dampening_frac 0.01 --observer mse --group_size 64
|
74 |
```
|
|
|
147 |
model.save_pretrained(quant_path, save_compressed=True)
|
148 |
tokenizer.save_pretrained(quant_path)
|
149 |
```
|
150 |
+
</details>
|
151 |
|
152 |
## Evaluation
|
153 |
|
|
|
206 |
|
207 |
### Accuracy
|
208 |
|
209 |
+
<table>
|
210 |
+
<thead>
|
211 |
+
<tr>
|
212 |
+
<th>Category</th>
|
213 |
+
<th>Metric</th>
|
214 |
+
<th>ibm-granite/granite-3.1-2b-instruct</th>
|
215 |
+
<th>neuralmagic/granite-3.1-2b-instruct-quantized.w4a16</th>
|
216 |
+
<th>Recovery (%)</th>
|
217 |
+
</tr>
|
218 |
+
</thead>
|
219 |
+
<tbody>
|
220 |
+
<tr>
|
221 |
+
<td rowspan="7"><b>OpenLLM v1</b></td>
|
222 |
+
<td>ARC-Challenge (Acc-Norm, 25-shot)</td>
|
223 |
+
<td>55.63</td>
|
224 |
+
<td>54.18</td>
|
225 |
+
<td>97.39</td>
|
226 |
+
</tr>
|
227 |
+
<tr>
|
228 |
+
<td>GSM8K (Strict-Match, 5-shot)</td>
|
229 |
+
<td>60.96</td>
|
230 |
+
<td>62.85</td>
|
231 |
+
<td>103.10</td>
|
232 |
+
</tr>
|
233 |
+
<tr>
|
234 |
+
<td>HellaSwag (Acc-Norm, 10-shot)</td>
|
235 |
+
<td>75.21</td>
|
236 |
+
<td>73.36</td>
|
237 |
+
<td>97.54</td>
|
238 |
+
</tr>
|
239 |
+
<tr>
|
240 |
+
<td>MMLU (Acc, 5-shot)</td>
|
241 |
+
<td>54.38</td>
|
242 |
+
<td>52.17</td>
|
243 |
+
<td>95.93</td>
|
244 |
+
</tr>
|
245 |
+
<tr>
|
246 |
+
<td>TruthfulQA (MC2, 0-shot)</td>
|
247 |
+
<td>55.93</td>
|
248 |
+
<td>56.83</td>
|
249 |
+
<td>101.61</td>
|
250 |
+
</tr>
|
251 |
+
<tr>
|
252 |
+
<td>Winogrande (Acc, 5-shot)</td>
|
253 |
+
<td>69.67</td>
|
254 |
+
<td>69.85</td>
|
255 |
+
<td>100.26</td>
|
256 |
+
</tr>
|
257 |
+
<tr>
|
258 |
+
<td><b>Average Score</b></td>
|
259 |
+
<td><b>61.98</b></td>
|
260 |
+
<td><b>61.54</b></td>
|
261 |
+
<td><b>99.29</b></td>
|
262 |
+
</tr>
|
263 |
+
<tr>
|
264 |
+
<td rowspan="7"><b>OpenLLM v2</b></td>
|
265 |
+
<td>IFEval (Inst Level Strict Acc, 0-shot)</td>
|
266 |
+
<td>67.99</td>
|
267 |
+
<td>67.63</td>
|
268 |
+
<td>99.47</td>
|
269 |
+
</tr>
|
270 |
+
<tr>
|
271 |
+
<td>BBH (Acc-Norm, 3-shot)</td>
|
272 |
+
<td>44.11</td>
|
273 |
+
<td>43.22</td>
|
274 |
+
<td>97.98</td>
|
275 |
+
</tr>
|
276 |
+
<tr>
|
277 |
+
<td>Math-Hard (Exact-Match, 4-shot)</td>
|
278 |
+
<td>8.66</td>
|
279 |
+
<td>8.77</td>
|
280 |
+
<td>101.27</td>
|
281 |
+
</tr>
|
282 |
+
<tr>
|
283 |
+
<td>GPQA (Acc-Norm, 0-shot)</td>
|
284 |
+
<td>28.30</td>
|
285 |
+
<td>28.56</td>
|
286 |
+
<td>100.92</td>
|
287 |
+
</tr>
|
288 |
+
<tr>
|
289 |
+
<td>MUSR (Acc-Norm, 0-shot)</td>
|
290 |
+
<td>35.12</td>
|
291 |
+
<td>35.26</td>
|
292 |
+
<td>100.40</td>
|
293 |
+
</tr>
|
294 |
+
<tr>
|
295 |
+
<td>MMLU-Pro (Acc, 5-shot)</td>
|
296 |
+
<td>26.87</td>
|
297 |
+
<td>27.27</td>
|
298 |
+
<td>101.49</td>
|
299 |
+
</tr>
|
300 |
+
<tr>
|
301 |
+
<td><b>Average Score</b></td>
|
302 |
+
<td><b>35.17</b></td>
|
303 |
+
<td><b>35.12</b></td>
|
304 |
+
<td><b>99.84</b></td>
|
305 |
+
</tr>
|
306 |
+
<tr>
|
307 |
+
<td rowspan="2"><b>HumanEval</b></td>
|
308 |
+
<td>HumanEval Pass@1</td>
|
309 |
+
<td>53.40</td>
|
310 |
+
<td>52.30</td>
|
311 |
+
<td>97.94</td>
|
312 |
+
</tr>
|
313 |
+
</tbody>
|
314 |
+
</table>
|
315 |
+
|
316 |
+
|
317 |
|
318 |
## Inference Performance
|
319 |
|