--- library_name: transformers language: - fa license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: 'whisper-large-v3-turbo-fa-c17-avs ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: fa split: None args: 'config: fa, split: test' metrics: - name: Wer type: wer value: 27.209121534076186 --- # whisper-large-v3-turbo-fa-c17-avs This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2583 - Wer: 27.2091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.2293 | 0.4055 | 1000 | 0.4008 | 40.3172 | | 0.167 | 0.8110 | 2000 | 0.3385 | 34.0503 | | 0.0948 | 1.2165 | 3000 | 0.3067 | 31.7494 | | 0.0669 | 1.6221 | 4000 | 0.2878 | 29.7909 | | 0.0458 | 2.0276 | 5000 | 0.2583 | 27.2091 | ### Framework versions - Transformers 4.52.2 - Pytorch 2.7.0+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1