Update README.md
Browse files
README.md
CHANGED
@@ -25,10 +25,10 @@ base_model:
|
|
25 |
- **Code Demo**: https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing
|
26 |
- **Paper:** http://hdl.handle.net/2117/413967
|
27 |
|
28 |
-
## Model Results
|
29 |
|
30 |
| Organ | Dice Score (%) |
|
31 |
-
|
32 |
| Spleen | 97.4 |
|
33 |
| Right Kidney | 96.5 |
|
34 |
| Left Kidney | 96.4 |
|
@@ -130,39 +130,115 @@ predictor.predict_from_files(
|
|
130 |
|
131 |
See this [**demo**](https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing) on how to use the model and visualize its results.
|
132 |
|
133 |
-
##
|
|
|
|
|
|
|
|
|
134 |
|
135 |
GennUNet was trained using a unified dataset consisting of three large-scale abdominal organ segmentation datasets:
|
136 |
- BTCV (Beyond the Cranial Vault)
|
137 |
- AMOS (Abdominal Multi-Organ Segmentation)
|
138 |
- TotalSegmentator
|
139 |
|
140 |
-
The datasets were processed to remove redundant and inconsistent samples, including intensity normalization, orientation normalization, foreground cropping, and spacing standardization to ensure consistent training input.
|
141 |
-
|
142 |
| Dataset | Year | 5-Fold Cross-Val | Test |
|
143 |
-
|
144 |
| BTCV | 2015 | 30 | 20 |
|
145 |
| AMOS | 2022 | 272 | 200 |
|
146 |
| TotalSegmentator | 2023 | 378 | - |
|
147 |
|
148 |
-
|
149 |
|
150 |
-
|
151 |
|
|
|
152 |
|
|
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
## Training Details
|
157 |
-
|
158 |
-
- **Loss Function:** Dice Loss + Cross-Entropy Loss
|
159 |
-
- **Optimizer:** Adam + Polymonial Learning Rate scheduler
|
160 |
-
- **Initial Learning Rate:** 0.01
|
161 |
-
- **Batch Size:** 2
|
162 |
-
- **Augmentation:** Rotation, scaling, Gaussian noise, contrast adjustment, mirroring
|
163 |
-
- **Training Duration:** 1000 epochs
|
164 |
-
|
165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
## Environmental Impact
|
168 |
|
|
|
25 |
- **Code Demo**: https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing
|
26 |
- **Paper:** http://hdl.handle.net/2117/413967
|
27 |
|
28 |
+
## Model Results
|
29 |
|
30 |
| Organ | Dice Score (%) |
|
31 |
+
|:---------------:|:--------------:|
|
32 |
| Spleen | 97.4 |
|
33 |
| Right Kidney | 96.5 |
|
34 |
| Left Kidney | 96.4 |
|
|
|
130 |
|
131 |
See this [**demo**](https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing) on how to use the model and visualize its results.
|
132 |
|
133 |
+
## Training Details
|
134 |
+
|
135 |
+
### Training Data
|
136 |
+
|
137 |
+
The dataset is available at: https://doi.org/10.5281/zenodo.11635577
|
138 |
|
139 |
GennUNet was trained using a unified dataset consisting of three large-scale abdominal organ segmentation datasets:
|
140 |
- BTCV (Beyond the Cranial Vault)
|
141 |
- AMOS (Abdominal Multi-Organ Segmentation)
|
142 |
- TotalSegmentator
|
143 |
|
|
|
|
|
144 |
| Dataset | Year | 5-Fold Cross-Val | Test |
|
145 |
+
|:---------------------:|:------:|:-------:|:---------:|
|
146 |
| BTCV | 2015 | 30 | 20 |
|
147 |
| AMOS | 2022 | 272 | 200 |
|
148 |
| TotalSegmentator | 2023 | 378 | - |
|
149 |
|
150 |
+
### Training Procedure
|
151 |
|
152 |
+
The training code is available at: https://github.com/nicoalpis/GennUNet
|
153 |
|
154 |
+
#### Preprocessing
|
155 |
|
156 |
+
**Patch Extraction**
|
157 |
|
158 |
+
The datasets were processed to remove redundant and inconsistent samples, including intensity normalization, orientation normalization, foreground cropping, and spacing standardization to ensure consistent training input.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
|
160 |
+
**Data Augmentation**
|
161 |
+
|
162 |
+
| Technique (MONAI) | Probability | Range |
|
163 |
+
|:------------------------:|:-----------:|:-----------------------------------------:|
|
164 |
+
| Rotation | 0.20 | (-0.52, 0.52) |
|
165 |
+
| Scaling | 0.20 | (0.7, 1.4) |
|
166 |
+
| Gaussian Noise | 0.10 | (0, 0.1) |
|
167 |
+
| Gaussian Blur | 0.10 | (0.5, 1.0) |
|
168 |
+
| Contrast | 0.15 | (0.75, 1.25) |
|
169 |
+
| Mirroring | 0.50 (per axis) | |
|
170 |
+
|
171 |
+
### Training Hyperparameters
|
172 |
+
|
173 |
+
- Loss Function: Dice Loss + Cross-Entropy Loss
|
174 |
+
- Optimizer: Adam
|
175 |
+
- Learning Rate: 0.01
|
176 |
+
- Weight Decay: 0.00003
|
177 |
+
- Scheduler: PolynomialLR
|
178 |
+
- Batch Size: 2
|
179 |
+
- Epochs 1000
|
180 |
+
|
181 |
+
## Evaluation
|
182 |
+
|
183 |
+
The evaluation code is available at: https://github.com/nicoalpis/GennUNet
|
184 |
+
|
185 |
+
### Testing Data, Factors & Metrics
|
186 |
+
|
187 |
+
#### External Evaluation Data
|
188 |
+
|
189 |
+
- [FLARE 2022](https://flare22.grand-challenge.org/)
|
190 |
+
- [KiTS19](https://kits19.grand-challenge.org/)
|
191 |
+
|
192 |
+
#### Metrics
|
193 |
+
|
194 |
+
Dice Similarity Coefficient = (2 * TP) / (2 * TP + FP + FN)
|
195 |
+
|
196 |
+
### Results
|
197 |
+
|
198 |
+
**Validation**
|
199 |
+
|
200 |
+
| Dataset | Dice Score (%) |
|
201 |
+
|:------------------:|:---------------:|
|
202 |
+
| BTCV | 85.97 |
|
203 |
+
| AMOS | 90.32 |
|
204 |
+
| TotalSegmentator | 94.25 |
|
205 |
+
|
206 |
+
**Test**
|
207 |
+
|
208 |
+
| Dataset | Dice Score (%) |
|
209 |
+
|:------------------:|:---------------:|
|
210 |
+
| BTCV | 86.17 |
|
211 |
+
| AMOS | 90.93 |
|
212 |
+
| FLARE 2022 | 90.43 |
|
213 |
+
| KiTS19 | 82.07 |
|
214 |
+
|
215 |
+
**Model Performance Comparison**
|
216 |
+
|
217 |
+
| Method | BTCV | AMOS | TotalSeg | Arch |
|
218 |
+
|:-----------------------:|:-------:|:-------:|:----------:|:------:|
|
219 |
+
| nnUNet (org.) | 83.08 | 88.64 | 93.20 | CNN |
|
220 |
+
| nnUNet ResEnc M | 83.31 | 88.77 | - | CNN |
|
221 |
+
| nnUNet ResEnc L | 83.35 | 89.41 | - | CNN |
|
222 |
+
| nnUNet ResEnc XL | 83.28 | 89.68 | - | CNN |
|
223 |
+
| MedNeXt L k3 | 84.70 | 89.62 | - | CNN |
|
224 |
+
| MedNeXt L k5 | 85.04 | 89.73 | - | CNN |
|
225 |
+
| STU-Net S | 82.92 | 88.08 | 84.72 | CNN |
|
226 |
+
| STU-Net B | 83.05 | 88.46 | 87.67 | CNN |
|
227 |
+
| STU-Net L | 83.36 | 89.34 | 88.92 | CNN |
|
228 |
+
| Swin UNETR | 78.89 | 83.81 | 84.18 | TF |
|
229 |
+
| Swin UNETRV2 | 80.85 | 86.24 | - | TF |
|
230 |
+
| nnFormer | 80.86 | 81.55 | 79.26 | TF |
|
231 |
+
| CoTr | 81.95 | 88.02 | - | TF |
|
232 |
+
| No-Mamba Base | 83.69 | 89.04 | - | CNN |
|
233 |
+
| U-Mamba Bot | 83.51 | 89.13 | - | Mam |
|
234 |
+
| U-Mamba Enc | 82.41 | 88.38 | - | Mam |
|
235 |
+
| A3DS SegResNet | 80.69 | 87.27 | - | CNN |
|
236 |
+
| A3DS DiNTS | 78.18 | 82.35 | - | CNN |
|
237 |
+
| A3DS SwinUNETR | 76.54 | 85.05 | - | TF |
|
238 |
+
| Ours (GennUNet) | **85.97** | **90.32¹** | **94.25²** | CNN |
|
239 |
+
|
240 |
+
¹ Recall that the achieved results with the AMOS dataset lack 3 classes from the original dataset.
|
241 |
+
² The exact number of classes to which this study's results are being compared is not specified in the sources.
|
242 |
|
243 |
## Environmental Impact
|
244 |
|