nicoalpis commited on
Commit
0f39d32
·
verified ·
1 Parent(s): 5f385c5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -19
README.md CHANGED
@@ -25,10 +25,10 @@ base_model:
25
  - **Code Demo**: https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing
26
  - **Paper:** http://hdl.handle.net/2117/413967
27
 
28
- ## Model Results**
29
 
30
  | Organ | Dice Score (%) |
31
- |---------------|--------------|
32
  | Spleen | 97.4 |
33
  | Right Kidney | 96.5 |
34
  | Left Kidney | 96.4 |
@@ -130,39 +130,115 @@ predictor.predict_from_files(
130
 
131
  See this [**demo**](https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing) on how to use the model and visualize its results.
132
 
133
- ## Datasets
 
 
 
 
134
 
135
  GennUNet was trained using a unified dataset consisting of three large-scale abdominal organ segmentation datasets:
136
  - BTCV (Beyond the Cranial Vault)
137
  - AMOS (Abdominal Multi-Organ Segmentation)
138
  - TotalSegmentator
139
 
140
- The datasets were processed to remove redundant and inconsistent samples, including intensity normalization, orientation normalization, foreground cropping, and spacing standardization to ensure consistent training input.
141
-
142
  | Dataset | Year | 5-Fold Cross-Val | Test |
143
- |---------------------|------|-------|---------|
144
  | BTCV | 2015 | 30 | 20 |
145
  | AMOS | 2022 | 272 | 200 |
146
  | TotalSegmentator | 2023 | 378 | - |
147
 
148
- ## Evaluation Results
149
 
150
- GennUNet was evaluated using a five-fold cross-validation approach, demonstrating superior segmentation performance:
151
 
 
152
 
 
153
 
154
- GennUNet demonstrates strong generalization across datasets, outperforming transformer-based models and previous state-of-the-art segmentation models.
155
-
156
- ## Training Details
157
-
158
- - **Loss Function:** Dice Loss + Cross-Entropy Loss
159
- - **Optimizer:** Adam + Polymonial Learning Rate scheduler
160
- - **Initial Learning Rate:** 0.01
161
- - **Batch Size:** 2
162
- - **Augmentation:** Rotation, scaling, Gaussian noise, contrast adjustment, mirroring
163
- - **Training Duration:** 1000 epochs
164
-
165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
166
 
167
  ## Environmental Impact
168
 
 
25
  - **Code Demo**: https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing
26
  - **Paper:** http://hdl.handle.net/2117/413967
27
 
28
+ ## Model Results
29
 
30
  | Organ | Dice Score (%) |
31
+ |:---------------:|:--------------:|
32
  | Spleen | 97.4 |
33
  | Right Kidney | 96.5 |
34
  | Left Kidney | 96.4 |
 
130
 
131
  See this [**demo**](https://colab.research.google.com/drive/10JyssUcyqbZ9zWPop2fHwdAH5K9LpLe1?usp=sharing) on how to use the model and visualize its results.
132
 
133
+ ## Training Details
134
+
135
+ ### Training Data
136
+
137
+ The dataset is available at: https://doi.org/10.5281/zenodo.11635577
138
 
139
  GennUNet was trained using a unified dataset consisting of three large-scale abdominal organ segmentation datasets:
140
  - BTCV (Beyond the Cranial Vault)
141
  - AMOS (Abdominal Multi-Organ Segmentation)
142
  - TotalSegmentator
143
 
 
 
144
  | Dataset | Year | 5-Fold Cross-Val | Test |
145
+ |:---------------------:|:------:|:-------:|:---------:|
146
  | BTCV | 2015 | 30 | 20 |
147
  | AMOS | 2022 | 272 | 200 |
148
  | TotalSegmentator | 2023 | 378 | - |
149
 
150
+ ### Training Procedure
151
 
152
+ The training code is available at: https://github.com/nicoalpis/GennUNet
153
 
154
+ #### Preprocessing
155
 
156
+ **Patch Extraction**
157
 
158
+ The datasets were processed to remove redundant and inconsistent samples, including intensity normalization, orientation normalization, foreground cropping, and spacing standardization to ensure consistent training input.
 
 
 
 
 
 
 
 
 
 
159
 
160
+ **Data Augmentation**
161
+
162
+ | Technique (MONAI) | Probability | Range |
163
+ |:------------------------:|:-----------:|:-----------------------------------------:|
164
+ | Rotation | 0.20 | (-0.52, 0.52) |
165
+ | Scaling | 0.20 | (0.7, 1.4) |
166
+ | Gaussian Noise | 0.10 | (0, 0.1) |
167
+ | Gaussian Blur | 0.10 | (0.5, 1.0) |
168
+ | Contrast | 0.15 | (0.75, 1.25) |
169
+ | Mirroring | 0.50 (per axis) | |
170
+
171
+ ### Training Hyperparameters
172
+
173
+ - Loss Function: Dice Loss + Cross-Entropy Loss
174
+ - Optimizer: Adam
175
+ - Learning Rate: 0.01
176
+ - Weight Decay: 0.00003
177
+ - Scheduler: PolynomialLR
178
+ - Batch Size: 2
179
+ - Epochs 1000
180
+
181
+ ## Evaluation
182
+
183
+ The evaluation code is available at: https://github.com/nicoalpis/GennUNet
184
+
185
+ ### Testing Data, Factors & Metrics
186
+
187
+ #### External Evaluation Data
188
+
189
+ - [FLARE 2022](https://flare22.grand-challenge.org/)
190
+ - [KiTS19](https://kits19.grand-challenge.org/)
191
+
192
+ #### Metrics
193
+
194
+ Dice Similarity Coefficient = (2 * TP) / (2 * TP + FP + FN)
195
+
196
+ ### Results
197
+
198
+ **Validation**
199
+
200
+ | Dataset | Dice Score (%) |
201
+ |:------------------:|:---------------:|
202
+ | BTCV | 85.97 |
203
+ | AMOS | 90.32 |
204
+ | TotalSegmentator | 94.25 |
205
+
206
+ **Test**
207
+
208
+ | Dataset | Dice Score (%) |
209
+ |:------------------:|:---------------:|
210
+ | BTCV | 86.17 |
211
+ | AMOS | 90.93 |
212
+ | FLARE 2022 | 90.43 |
213
+ | KiTS19 | 82.07 |
214
+
215
+ **Model Performance Comparison**
216
+
217
+ | Method | BTCV | AMOS | TotalSeg | Arch |
218
+ |:-----------------------:|:-------:|:-------:|:----------:|:------:|
219
+ | nnUNet (org.) | 83.08 | 88.64 | 93.20 | CNN |
220
+ | nnUNet ResEnc M | 83.31 | 88.77 | - | CNN |
221
+ | nnUNet ResEnc L | 83.35 | 89.41 | - | CNN |
222
+ | nnUNet ResEnc XL | 83.28 | 89.68 | - | CNN |
223
+ | MedNeXt L k3 | 84.70 | 89.62 | - | CNN |
224
+ | MedNeXt L k5 | 85.04 | 89.73 | - | CNN |
225
+ | STU-Net S | 82.92 | 88.08 | 84.72 | CNN |
226
+ | STU-Net B | 83.05 | 88.46 | 87.67 | CNN |
227
+ | STU-Net L | 83.36 | 89.34 | 88.92 | CNN |
228
+ | Swin UNETR | 78.89 | 83.81 | 84.18 | TF |
229
+ | Swin UNETRV2 | 80.85 | 86.24 | - | TF |
230
+ | nnFormer | 80.86 | 81.55 | 79.26 | TF |
231
+ | CoTr | 81.95 | 88.02 | - | TF |
232
+ | No-Mamba Base | 83.69 | 89.04 | - | CNN |
233
+ | U-Mamba Bot | 83.51 | 89.13 | - | Mam |
234
+ | U-Mamba Enc | 82.41 | 88.38 | - | Mam |
235
+ | A3DS SegResNet | 80.69 | 87.27 | - | CNN |
236
+ | A3DS DiNTS | 78.18 | 82.35 | - | CNN |
237
+ | A3DS SwinUNETR | 76.54 | 85.05 | - | TF |
238
+ | Ours (GennUNet) | **85.97** | **90.32¹** | **94.25²** | CNN |
239
+
240
+ ¹ Recall that the achieved results with the AMOS dataset lack 3 classes from the original dataset.
241
+ ² The exact number of classes to which this study's results are being compared is not specified in the sources.
242
 
243
  ## Environmental Impact
244