File size: 4,454 Bytes
2c90391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
base_model: mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated
library_name: peft
tags:
- generated_from_trainer
model-index:
- name: Meta-Llama-3.1-8B-Instruct-abliterated-ICONN-1-BasicChat
  results: []
license: llama3.1
datasets:
- Enderchef/ICONN-1-BasicChat-Data-SuperLite
---

[Meta-Llama-3.1-8B-Instruct-abliterated](https://huggingface.co/mlabonne/Meta-Llama-3.1-8B-Instruct-abliterated) finetuned using the [ICONN-1-BasicChat-Data-SuperLite](https://huggingface.co/datasets/Enderchef/ICONN-1-BasicChat-Data-SuperLite) dataset as requested by [@Enderchef](https://huggingface.co/Enderchef) under https://huggingface.co/mradermacher/model_requests/discussions/918

axolotl version: `0.9.0`
```yaml
base_model: /dpool/Meta-Llama-3.1-8B-Instruct-abliterated
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false

datasets:
  - path: /apool/axolotl/0001.parquet
    chat_template: llama3
    type:
      system_prompt: ""
      field_system: system
      field_instruction: input
      field_output: output
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out

adapter: lora
lora_model_dir:

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: true

lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 8
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00001

bf16: auto
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
saves_per_epoch: 1
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|end_of_text|>

```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 8.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.5587        | 0.0336 | 1    | 3.4337          |
| 3.6702        | 0.2689 | 8    | 3.4260          |
| 3.5802        | 0.5378 | 16   | 3.3161          |
| 3.2421        | 0.8067 | 24   | 3.0272          |
| 2.322         | 1.0672 | 32   | 2.4812          |
| 1.9774        | 1.3361 | 40   | 1.8708          |
| 1.5103        | 1.6050 | 48   | 1.3871          |
| 1.1904        | 1.8739 | 56   | 1.0542          |
| 1.0394        | 2.1345 | 64   | 0.8591          |
| 0.5501        | 2.4034 | 72   | 0.6723          |
| 0.2454        | 2.6723 | 80   | 0.5369          |
| 0.4499        | 2.9412 | 88   | 0.4286          |
| 0.2194        | 3.2017 | 96   | 0.3691          |
| 0.1172        | 3.4706 | 104  | 0.2802          |
| 0.0739        | 3.7395 | 112  | 0.1948          |
| 0.1524        | 4.0    | 120  | 0.1457          |
| 0.0444        | 4.2689 | 128  | 0.1125          |
| 0.1385        | 4.5378 | 136  | 0.0759          |
| 0.0591        | 4.8067 | 144  | 0.0560          |
| 0.0252        | 5.0672 | 152  | 0.0460          |
| 0.0066        | 5.3361 | 160  | 0.0370          |
| 0.023         | 5.6050 | 168  | 0.0252          |
| 0.0033        | 5.8739 | 176  | 0.0202          |
| 0.0029        | 6.1345 | 184  | 0.0168          |
| 0.0024        | 6.4034 | 192  | 0.0154          |
| 0.0103        | 6.6723 | 200  | 0.0146          |
| 0.0108        | 6.9412 | 208  | 0.0139          |
| 0.0049        | 7.2017 | 216  | 0.0138          |
| 0.0025        | 7.4706 | 224  | 0.0139          |
| 0.0036        | 7.7395 | 232  | 0.0136          |


### Framework versions

- PEFT 0.15.2
- Transformers 4.51.3
- Pytorch 2.7.0+cu128
- Datasets 3.5.0
- Tokenizers 0.21.1