Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import CsmForConditionalGeneration, AutoProcessor
|
| 4 |
+
import os
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
|
| 7 |
+
class DanishTTSInterface:
|
| 8 |
+
def __init__(self, model_path="./model"):
|
| 9 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
print(f"Using device: {self.device}")
|
| 11 |
+
|
| 12 |
+
# Load processor and model following CSM docs pattern
|
| 13 |
+
self.processor = AutoProcessor.from_pretrained(model_path)
|
| 14 |
+
self.model = CsmForConditionalGeneration.from_pretrained(
|
| 15 |
+
model_path,
|
| 16 |
+
device_map=self.device
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
self.model.eval()
|
| 20 |
+
|
| 21 |
+
def generate_speech(self, text, temperature=0.7, max_length=1024, speaker_id=0,
|
| 22 |
+
do_sample=True, depth_decoder_temperature=0.7, depth_decoder_do_sample=True,
|
| 23 |
+
top_k=50, top_p=0.9, repetition_penalty=1.0):
|
| 24 |
+
"""Generate speech from Danish text"""
|
| 25 |
+
try:
|
| 26 |
+
# Format text with speaker ID following CSM docs pattern
|
| 27 |
+
formatted_text = f"[{speaker_id}]{text}"
|
| 28 |
+
|
| 29 |
+
# Prepare inputs following CSM docs exactly
|
| 30 |
+
inputs = self.processor(formatted_text, add_special_tokens=True).to(self.device)
|
| 31 |
+
|
| 32 |
+
# Prepare generation parameters
|
| 33 |
+
generation_kwargs = {
|
| 34 |
+
"output_audio": True,
|
| 35 |
+
"max_length": max_length,
|
| 36 |
+
"temperature": temperature,
|
| 37 |
+
"do_sample": do_sample,
|
| 38 |
+
"depth_decoder_temperature": depth_decoder_temperature,
|
| 39 |
+
"depth_decoder_do_sample": depth_decoder_do_sample,
|
| 40 |
+
}
|
| 41 |
+
|
| 42 |
+
# Add sampling parameters only if sampling is enabled
|
| 43 |
+
if do_sample:
|
| 44 |
+
generation_kwargs.update({
|
| 45 |
+
"top_k": int(top_k) if top_k > 0 else None,
|
| 46 |
+
"top_p": top_p if top_p < 1.0 else None,
|
| 47 |
+
"repetition_penalty": repetition_penalty
|
| 48 |
+
})
|
| 49 |
+
|
| 50 |
+
# Generate audio following CSM docs pattern
|
| 51 |
+
audio = self.model.generate(**inputs, **generation_kwargs)
|
| 52 |
+
|
| 53 |
+
# Save audio using processor
|
| 54 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 55 |
+
temp_path = f"output_danish_{timestamp}.wav"
|
| 56 |
+
self.processor.save_audio(audio, temp_path)
|
| 57 |
+
|
| 58 |
+
return temp_path, f"Generated Danish speech for: '{text}'"
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
error_msg = f"Error generating speech: {str(e)}"
|
| 62 |
+
print(error_msg)
|
| 63 |
+
return None, error_msg
|
| 64 |
+
|
| 65 |
+
def create_interface():
|
| 66 |
+
"""Create and configure the Gradio interface"""
|
| 67 |
+
|
| 68 |
+
# Initialize TTS model
|
| 69 |
+
try:
|
| 70 |
+
tts_model = DanishTTSInterface()
|
| 71 |
+
print("Model loaded successfully!")
|
| 72 |
+
except Exception as e:
|
| 73 |
+
print(f"Error loading model: {e}")
|
| 74 |
+
return None
|
| 75 |
+
|
| 76 |
+
def calculate_auto_max_length(text, multiplier=1.0):
|
| 77 |
+
"""Calculate appropriate max length based on input text"""
|
| 78 |
+
# Base calculation: roughly 4-6 tokens per character for Danish text
|
| 79 |
+
# Plus generous extra tokens for audio generation
|
| 80 |
+
text_tokens = len(text) * 5
|
| 81 |
+
# Add larger buffer for speaker tokens, special tokens, and audio generation
|
| 82 |
+
buffer = 400
|
| 83 |
+
# Higher minimum viable length
|
| 84 |
+
min_length = 256
|
| 85 |
+
# Calculate with adjustable safety margin
|
| 86 |
+
calculated_length = max(min_length, int((text_tokens + buffer) * multiplier))
|
| 87 |
+
# Round to nearest 128 for cleaner values
|
| 88 |
+
return ((calculated_length + 127) // 128) * 128
|
| 89 |
+
|
| 90 |
+
def tts_inference(text, temperature, auto_length, auto_multiplier, max_length, speaker_id, do_sample,
|
| 91 |
+
depth_decoder_temperature, depth_decoder_do_sample, top_k, top_p, repetition_penalty):
|
| 92 |
+
"""Gradio interface function for TTS inference"""
|
| 93 |
+
if not text.strip():
|
| 94 |
+
return None, "Please enter some Danish text to synthesize."
|
| 95 |
+
|
| 96 |
+
# Determine max length based on toggle
|
| 97 |
+
if auto_length:
|
| 98 |
+
effective_max_length = calculate_auto_max_length(text, auto_multiplier)
|
| 99 |
+
status_prefix = f"Auto max length: {effective_max_length} (multiplier: {auto_multiplier}). "
|
| 100 |
+
else:
|
| 101 |
+
effective_max_length = max_length
|
| 102 |
+
status_prefix = f"Manual max length: {effective_max_length}. "
|
| 103 |
+
|
| 104 |
+
audio_path, message = tts_model.generate_speech(
|
| 105 |
+
text=text,
|
| 106 |
+
temperature=temperature,
|
| 107 |
+
max_length=effective_max_length,
|
| 108 |
+
speaker_id=int(speaker_id),
|
| 109 |
+
do_sample=do_sample,
|
| 110 |
+
depth_decoder_temperature=depth_decoder_temperature,
|
| 111 |
+
depth_decoder_do_sample=depth_decoder_do_sample,
|
| 112 |
+
top_k=top_k,
|
| 113 |
+
top_p=top_p,
|
| 114 |
+
repetition_penalty=repetition_penalty
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Prepend length info to status message
|
| 118 |
+
if audio_path:
|
| 119 |
+
message = status_prefix + message
|
| 120 |
+
|
| 121 |
+
return audio_path, message
|
| 122 |
+
|
| 123 |
+
# Create Gradio interface using modern Blocks syntax
|
| 124 |
+
with gr.Blocks(
|
| 125 |
+
title="CSM-1B Danish Text-to-Speech"
|
| 126 |
+
) as interface:
|
| 127 |
+
gr.Markdown("# CSM-1B Danish Text-to-Speech")
|
| 128 |
+
gr.Markdown("Natural-sounding Danish speech synthesis with voice control. Authored by [Nicolaj Reck](https://www.linkedin.com/in/nicolaj-reck-053aa38a/)")
|
| 129 |
+
gr.Markdown("")
|
| 130 |
+
gr.Markdown("")
|
| 131 |
+
|
| 132 |
+
with gr.Row():
|
| 133 |
+
with gr.Column():
|
| 134 |
+
gr.Markdown("### Input & Voice Settings")
|
| 135 |
+
text_input = gr.Textbox(
|
| 136 |
+
label="Danish Text",
|
| 137 |
+
placeholder="Indtast dansk tekst her...",
|
| 138 |
+
lines=3
|
| 139 |
+
)
|
| 140 |
+
speaker_id_input = gr.Radio(
|
| 141 |
+
choices=[("Male", 0), ("Female", 1)],
|
| 142 |
+
value=0,
|
| 143 |
+
label="Speaker",
|
| 144 |
+
info="Select voice gender"
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
temperature_input = gr.Slider(
|
| 148 |
+
minimum=0.0,
|
| 149 |
+
maximum=2.0,
|
| 150 |
+
value=0.7,
|
| 151 |
+
step=0.1,
|
| 152 |
+
label="Backbone Temperature",
|
| 153 |
+
info="Controls creativity for main model"
|
| 154 |
+
)
|
| 155 |
+
depth_decoder_temperature_input = gr.Slider(
|
| 156 |
+
minimum=0.0,
|
| 157 |
+
maximum=2.0,
|
| 158 |
+
value=0.7,
|
| 159 |
+
step=0.1,
|
| 160 |
+
label="Depth Decoder Temperature",
|
| 161 |
+
info="Controls creativity for depth decoder"
|
| 162 |
+
)
|
| 163 |
+
auto_length_input = gr.Checkbox(
|
| 164 |
+
value=True,
|
| 165 |
+
label="Auto Max Length",
|
| 166 |
+
info="Automatically adapt max length based on input text length"
|
| 167 |
+
)
|
| 168 |
+
auto_length_multiplier = gr.Slider(
|
| 169 |
+
minimum=0.5,
|
| 170 |
+
maximum=2.5,
|
| 171 |
+
value=1.0,
|
| 172 |
+
step=0.1,
|
| 173 |
+
label="Auto Length Multiplier",
|
| 174 |
+
info="Adjust auto-calculated max length (1.0 = base calculation)"
|
| 175 |
+
)
|
| 176 |
+
max_length_input = gr.Slider(
|
| 177 |
+
minimum=56,
|
| 178 |
+
maximum=2048,
|
| 179 |
+
value=1024,
|
| 180 |
+
step=64,
|
| 181 |
+
label="Max Length (Manual)",
|
| 182 |
+
info="Manual maximum sequence length (used when auto is disabled)",
|
| 183 |
+
interactive=False # Start disabled when auto is enabled
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
with gr.Column():
|
| 187 |
+
gr.Markdown("### Sampling Settings")
|
| 188 |
+
do_sample_input = gr.Checkbox(
|
| 189 |
+
value=True,
|
| 190 |
+
label="Enable Sampling (Backbone)",
|
| 191 |
+
info="Use sampling instead of greedy decoding"
|
| 192 |
+
)
|
| 193 |
+
depth_decoder_do_sample_input = gr.Checkbox(
|
| 194 |
+
value=True,
|
| 195 |
+
label="Enable Sampling (Depth Decoder)",
|
| 196 |
+
info="Use sampling for depth decoder"
|
| 197 |
+
)
|
| 198 |
+
top_k_input = gr.Slider(
|
| 199 |
+
minimum=0,
|
| 200 |
+
maximum=100,
|
| 201 |
+
value=50,
|
| 202 |
+
step=1,
|
| 203 |
+
label="Top-K",
|
| 204 |
+
info="Limit to top K tokens (0 = disabled)"
|
| 205 |
+
)
|
| 206 |
+
top_p_input = gr.Slider(
|
| 207 |
+
minimum=0.0,
|
| 208 |
+
maximum=1.0,
|
| 209 |
+
value=0.9,
|
| 210 |
+
step=0.05,
|
| 211 |
+
label="Top-P (Nucleus)",
|
| 212 |
+
info="Cumulative probability threshold"
|
| 213 |
+
)
|
| 214 |
+
repetition_penalty_input = gr.Slider(
|
| 215 |
+
minimum=0.5,
|
| 216 |
+
maximum=2.0,
|
| 217 |
+
value=1.0,
|
| 218 |
+
step=0.1,
|
| 219 |
+
label="Repetition Penalty",
|
| 220 |
+
info="Penalize repetitive tokens"
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
generate_btn = gr.Button("Generate Speech", variant="primary", size="lg")
|
| 224 |
+
|
| 225 |
+
with gr.Column():
|
| 226 |
+
gr.Markdown("### Output")
|
| 227 |
+
audio_output = gr.Audio(
|
| 228 |
+
label="Generated Speech"
|
| 229 |
+
)
|
| 230 |
+
status_output = gr.Textbox(
|
| 231 |
+
label="Status",
|
| 232 |
+
lines=2
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Toggle max length slider and multiplier based on auto mode
|
| 236 |
+
def toggle_auto_controls(auto_enabled):
|
| 237 |
+
return [
|
| 238 |
+
gr.Slider(interactive=auto_enabled), # multiplier
|
| 239 |
+
gr.Slider(interactive=not auto_enabled) # manual slider
|
| 240 |
+
]
|
| 241 |
+
|
| 242 |
+
auto_length_input.change(
|
| 243 |
+
fn=toggle_auto_controls,
|
| 244 |
+
inputs=[auto_length_input],
|
| 245 |
+
outputs=[auto_length_multiplier, max_length_input]
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
# Set up the generation function
|
| 249 |
+
generate_btn.click(
|
| 250 |
+
fn=tts_inference,
|
| 251 |
+
inputs=[
|
| 252 |
+
text_input, temperature_input, auto_length_input, auto_length_multiplier, max_length_input, speaker_id_input,
|
| 253 |
+
do_sample_input, depth_decoder_temperature_input, depth_decoder_do_sample_input,
|
| 254 |
+
top_k_input, top_p_input, repetition_penalty_input
|
| 255 |
+
],
|
| 256 |
+
outputs=[audio_output, status_output]
|
| 257 |
+
)
|
| 258 |
+
|
| 259 |
+
gr.Markdown("")
|
| 260 |
+
gr.Markdown("")
|
| 261 |
+
|
| 262 |
+
# Add examples with consistent parameters
|
| 263 |
+
gr.Examples(
|
| 264 |
+
examples=[
|
| 265 |
+
["Husk at gemme arbejdet, før computeren genstarter, ellers risikerer du at miste både filer og vigtige ændringer.", 0.96, True, 1.0, 1024, 1, True, 0.7, True, 50, 0.9, 1.0],
|
| 266 |
+
["Pakken leveres i morgen mellem 9 og 12, og du får en SMS-besked, så snart den er klar til afhentning.", 0.96, True, 1.0, 1024, 1, True, 0.7, True, 50, 0.9, 1.0],
|
| 267 |
+
["Vi gør opmærksom på, at toget mod Københavns Hovedbanegård er forsinket med omkring 15 minutter.", 0.96, True, 1.0, 1024, 1, True, 0.7, True, 50, 0.9, 1.0],
|
| 268 |
+
["Man får mest muligt ud af sin tid, og slipper for unødvendig stress, hvis man planlægger en rejse.", 0.96, True, 1.0, 1024, 1, True, 0.7, True, 50, 0.9, 1.0]
|
| 269 |
+
],
|
| 270 |
+
inputs=[
|
| 271 |
+
text_input, temperature_input, auto_length_input, auto_length_multiplier, max_length_input, speaker_id_input,
|
| 272 |
+
do_sample_input, depth_decoder_temperature_input, depth_decoder_do_sample_input,
|
| 273 |
+
top_k_input, top_p_input, repetition_penalty_input
|
| 274 |
+
]
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
return interface
|
| 278 |
+
|
| 279 |
+
def main():
|
| 280 |
+
"""Main function to launch the Gradio interface"""
|
| 281 |
+
print("Starting CSM-1B Danish TTS Interface...")
|
| 282 |
+
print(f"PyTorch version: {torch.__version__}")
|
| 283 |
+
print(f"CUDA available: {torch.cuda.is_available()}")
|
| 284 |
+
|
| 285 |
+
interface = create_interface()
|
| 286 |
+
|
| 287 |
+
if interface is None:
|
| 288 |
+
print("Failed to create interface. Please check your model path and dependencies.")
|
| 289 |
+
return
|
| 290 |
+
|
| 291 |
+
# Launch the interface
|
| 292 |
+
interface.launch(
|
| 293 |
+
server_name="0.0.0.0",
|
| 294 |
+
server_port=7860,
|
| 295 |
+
share=False,
|
| 296 |
+
debug=True,
|
| 297 |
+
show_error=True
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
if __name__ == "__main__":
|
| 301 |
+
main()
|