File size: 1,664 Bytes
85d7f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
license: apache-2.0
base_model: DavidAU/Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x
language:
- en
pipeline_tag: text-generation
tags:
- merge
- programming
- code generation
- code
- coding
- coder
- chat
- brainstorm
- qwen
- qwen3
- qwencoder
- brainstorm20x
- esper
- esper-3
- valiant
- valiant-labs
- qwen-3
- qwen-3-8b
- 8b
- reasoning
- code-instruct
- python
- javascript
- dev-ops
- jenkins
- terraform
- scripting
- powershell
- azure
- aws
- gcp
- cloud
- problem-solving
- architect
- engineer
- developer
- creative
- analytical
- expert
- rationality
- conversational
- instruct
- mlx
datasets:
- sequelbox/Titanium2.1-DeepSeek-R1
- sequelbox/Tachibana2-DeepSeek-R1
- sequelbox/Raiden-DeepSeek-R1
library_name: mlx
---

# Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x-q6-mlx

This model [Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x-q6-mlx](https://huggingface.co/Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x-q6-mlx) was
converted to MLX format from [DavidAU/Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x](https://huggingface.co/DavidAU/Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x)
using mlx-lm version **0.26.0**.

## Use with mlx

```bash
pip install mlx-lm
```

```python
from mlx_lm import load, generate

model, tokenizer = load("Qwen3-Esper3-Reasoning-CODER-Instruct-12B-Brainstorm20x-q6-mlx")

prompt = "hello"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)
```