|
import chess |
|
import chess.engine |
|
import numpy as np |
|
import tensorflow as tf |
|
import time |
|
import os |
|
import datetime |
|
import shutil |
|
from google.colab import files |
|
|
|
|
|
class PolicyValueNetwork(tf.keras.Model): |
|
def __init__(self, num_moves): |
|
super(PolicyValueNetwork, self).__init__() |
|
self.conv1 = tf.keras.layers.Conv2D(32, 3, activation='relu', padding='same') |
|
self.flatten = tf.keras.layers.Flatten() |
|
self.dense_policy = tf.keras.layers.Dense(num_moves, activation='softmax', name='policy_head') |
|
self.dense_value = tf.keras.layers.Dense(1, activation='tanh', name='value_head') |
|
|
|
def call(self, inputs): |
|
x = self.conv1(inputs) |
|
x = self.flatten(x) |
|
policy = self.dense_policy(x) |
|
value = self.dense_value(x) |
|
return policy, value |
|
|
|
|
|
NUM_POSSIBLE_MOVES = 4672 |
|
NUM_INPUT_PLANES = 12 |
|
|
|
|
|
policy_value_net = PolicyValueNetwork(NUM_POSSIBLE_MOVES) |
|
|
|
|
|
dummy_input = tf.random.normal((1, 8, 8, NUM_INPUT_PLANES)) |
|
policy, value = policy_value_net(dummy_input) |
|
|
|
|
|
|
|
try: |
|
model_path = "/content/models_colab/StockZero-2025-03-24-1727.weights.h5" |
|
policy_value_net.load_weights(model_path) |
|
print(f"Model weights loaded successfully from '{model_path}'") |
|
except Exception as e: |
|
print(f"Error loading weights: {e}") |
|
|
|
|
|
OUTPUT_DIR = "/content/converted_models" |
|
os.makedirs(OUTPUT_DIR, exist_ok=True) |
|
|
|
SAVED_MODEL_DIR = os.path.join(OUTPUT_DIR, "saved_model") |
|
KERAS_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.keras") |
|
H5_MODEL_PATH = os.path.join(OUTPUT_DIR, "model_weights.h5") |
|
PYTORCH_MODEL_PATH = os.path.join(OUTPUT_DIR, "pytorch_model.pth") |
|
PYTORCH_FULL_MODEL_PATH = os.path.join(OUTPUT_DIR, "pytorch_full_model.pth") |
|
ONNX_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.onnx") |
|
TFLITE_MODEL_PATH = os.path.join(OUTPUT_DIR, "model.tflite") |
|
BIN_FILE_PATH = os.path.join(OUTPUT_DIR, "model_weights.bin") |
|
NUMPY_FILE_PATH = os.path.join(OUTPUT_DIR, "model_weights.npz") |
|
|
|
|
|
|
|
try: |
|
tf.saved_model.save(policy_value_net, SAVED_MODEL_DIR) |
|
print(f"Model saved as SavedModel to '{SAVED_MODEL_DIR}'") |
|
except Exception as e: |
|
print(f"Error saving model as SavedModel: {e}") |
|
|
|
|
|
try: |
|
policy_value_net.save(KERAS_MODEL_PATH) |
|
print(f"Model saved as Keras .keras format to '{KERAS_MODEL_PATH}'") |
|
except Exception as e: |
|
print(f"Error saving as .keras format: {e}") |
|
|
|
try: |
|
policy_value_net.save_weights(H5_MODEL_PATH) |
|
print(f"Model weights saved as .h5 to '{H5_MODEL_PATH}'") |
|
except Exception as e: |
|
print(f"Error saving model weights as .h5: {e}") |
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
class PyTorchPolicyValueNetwork(nn.Module): |
|
def __init__(self, num_moves): |
|
super(PyTorchPolicyValueNetwork, self).__init__() |
|
self.conv1 = nn.Conv2d(12, 32, kernel_size=3, padding=1) |
|
self.relu = nn.ReLU() |
|
self.flatten = nn.Flatten() |
|
self.dense_policy = nn.Linear(8*8*32, num_moves) |
|
self.softmax = nn.Softmax(dim=1) |
|
self.dense_value = nn.Linear(8*8*32, 1) |
|
self.tanh = nn.Tanh() |
|
|
|
def forward(self, x): |
|
x = self.relu(self.conv1(x)) |
|
x = self.flatten(x) |
|
policy = self.softmax(self.dense_policy(x)) |
|
value = self.tanh(self.dense_value(x)) |
|
return policy, value |
|
|
|
try: |
|
pytorch_model = PyTorchPolicyValueNetwork(NUM_POSSIBLE_MOVES) |
|
|
|
|
|
keras_conv1 = policy_value_net.conv1 |
|
keras_dense_policy = policy_value_net.dense_policy |
|
keras_dense_value = policy_value_net.dense_value |
|
|
|
|
|
pytorch_model.conv1.weight = torch.nn.Parameter(torch.tensor(keras_conv1.kernel.numpy().transpose(3,2,0,1), dtype=torch.float32)) |
|
pytorch_model.conv1.bias = torch.nn.Parameter(torch.tensor(keras_conv1.bias.numpy(), dtype=torch.float32)) |
|
|
|
pytorch_model.dense_policy.weight = torch.nn.Parameter(torch.tensor(keras_dense_policy.kernel.numpy().transpose(), dtype=torch.float32)) |
|
pytorch_model.dense_policy.bias = torch.nn.Parameter(torch.tensor(keras_dense_policy.bias.numpy(), dtype=torch.float32)) |
|
|
|
pytorch_model.dense_value.weight = torch.nn.Parameter(torch.tensor(keras_dense_value.kernel.numpy().transpose(), dtype=torch.float32)) |
|
pytorch_model.dense_value.bias = torch.nn.Parameter(torch.tensor(keras_dense_value.bias.numpy(), dtype=torch.float32)) |
|
|
|
torch.save(pytorch_model.state_dict(), PYTORCH_MODEL_PATH) |
|
print(f"PyTorch model weights saved to '{PYTORCH_MODEL_PATH}'") |
|
|
|
torch.save(pytorch_model, PYTORCH_FULL_MODEL_PATH) |
|
print(f"PyTorch model saved as '{PYTORCH_FULL_MODEL_PATH}'") |
|
except Exception as e: |
|
print(f"Error during PyTorch conversion: {e}") |
|
|
|
|
|
|
|
import tf2onnx |
|
try: |
|
spec = (tf.TensorSpec((None, 8, 8, 12), tf.float32, name="input"),) |
|
onnx_model, _ = tf2onnx.convert.from_keras(policy_value_net, input_signature=spec) |
|
|
|
with open(ONNX_MODEL_PATH, "wb") as f: |
|
f.write(onnx_model.SerializeToString()) |
|
print(f"Model saved as ONNX to '{ONNX_MODEL_PATH}'") |
|
except Exception as e: |
|
print(f"Error saving model as ONNX: {e}") |
|
|
|
|
|
try: |
|
converter = tf.lite.TFLiteConverter.from_keras_model(policy_value_net) |
|
tflite_model = converter.convert() |
|
|
|
with open(TFLITE_MODEL_PATH, 'wb') as f: |
|
f.write(tflite_model) |
|
print(f"Model saved as TFLite to '{TFLITE_MODEL_PATH}'") |
|
except Exception as e: |
|
print(f"Error converting to TFLite: {e}") |
|
|
|
|
|
|
|
try: |
|
with open(BIN_FILE_PATH, 'wb') as f: |
|
for layer in policy_value_net.layers: |
|
for weight in layer.weights: |
|
weight_arr = weight.numpy() |
|
f.write(weight_arr.tobytes()) |
|
print(f"Model weights saved as .bin to '{BIN_FILE_PATH}'") |
|
except Exception as e: |
|
print(f"Error saving model weights as .bin: {e}") |
|
|
|
|
|
try: |
|
all_weights = {} |
|
for layer in policy_value_net.layers: |
|
for i, weight in enumerate(layer.weights): |
|
all_weights[f"{layer.name}_weight_{i}"] = weight.numpy() |
|
np.savez(NUMPY_FILE_PATH, **all_weights) |
|
print(f"Model weights saved as NumPy arrays to '{NUMPY_FILE_PATH}'") |
|
except Exception as e: |
|
print(f"Error saving model weights as NumPy: {e}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
print("To convert to TensorFlow.js format, run the 'tensorflowjs_converter' command-line tool (see comments in script).") |
|
|
|
|
|
|
|
try: |
|
current_datetime = datetime.datetime.now() |
|
zip_file_name = f"converted_models-{current_datetime.strftime('%Y%m%d%H%M')}" |
|
zip_file_path = f"/content/{zip_file_name}" |
|
shutil.make_archive(zip_file_path, 'zip', OUTPUT_DIR) |
|
print(f"All converted model files zipped to '{zip_file_path}.zip'") |
|
files.download(f"{zip_file_path}.zip") |
|
print("Download should start in a moment.") |
|
except Exception as e: |
|
print(f"Error zipping and creating download: {e}") |