update readme
Browse files- .gitattributes +2 -0
- README.md +338 -3
- assets/data-scale-csr-effect.svg +2734 -0
- assets/table2.png +3 -0
- assets/table3.png +3 -0
- assets/training_record/vica-train_grad_norm.svg +0 -0
- assets/training_record/vica-train_learning_rate.svg +1240 -0
- assets/training_record/vica-train_loss_with_ema.svg +0 -0
- assets/vsi-bench-comparison.svg +1993 -0
- assets/vsi-bench-table.png +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,7 +1,342 @@
|
|
1 |
---
|
2 |
-
|
3 |
tags:
|
4 |
-
-
|
5 |
- vision-language
|
6 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
---
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
tags:
|
4 |
+
- multimodal
|
5 |
- vision-language
|
6 |
+
- video understanding
|
7 |
+
- spatial reasoning
|
8 |
+
- visuospatial cognition
|
9 |
+
- llava
|
10 |
+
- qwen
|
11 |
+
- llava-video
|
12 |
+
datasets:
|
13 |
+
- nkkbr/ViCA-322K
|
14 |
+
- nkkbr/ViCA-thinking-2.68k
|
15 |
+
language:
|
16 |
+
- en
|
17 |
+
library_name: transformers
|
18 |
+
pipeline_tag: visual-question-answering
|
19 |
+
model_name: ViCA-7B
|
20 |
+
base_model: lmms-lab/LLaVA-Video-7B-Qwen2
|
21 |
+
---
|
22 |
+
|
23 |
+
# ViCA-7B: Visuospatial Cognitive Assistant
|
24 |
+
|
25 |
+
## Overview
|
26 |
+
|
27 |
+
**ViCA-7B** is a vision-language model specifically fine-tuned for *visuospatial reasoning* in indoor video environments. Built upon the LLaVA-Video-7B-Qwen2 architecture, it is trained using our newly proposed **ViCA-322K dataset**, which emphasizes both structured spatial annotations and complex instruction-based reasoning tasks.
|
28 |
+
|
29 |
+
ViCA-7B achieves **state-of-the-art performance** on [VSI-Bench](https://github.com/vision-x-nyu/thinking-in-space), outperforming both proprietary models like **GPT-4o** and **Gemini-1.5 Pro**, as well as larger open-source baselines.
|
30 |
+
|
31 |
+
> **ViCA-7B sets a new standard for open-source multimodal spatial reasoning on indoor videos, making it a strong candidate for embodied AI and robotics use cases.**
|
32 |
+
|
33 |
+
<p align="center">
|
34 |
+
<img src="assets/vsi-bench-comparison.svg" width="700"/>
|
35 |
+
</p>
|
36 |
+
|
37 |
+
<p align="center"><b>Figure 1:</b> Performance comparison of ViCA-7B and other models on <a href="https://github.com/vision-x-nyu/thinking-in-space">VSI-Bench</a>.</p>
|
38 |
+
|
39 |
+
|
40 |
+
## Model Architecture and Training Strategy
|
41 |
+
|
42 |
+
ViCA-7B is built upon the [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT) framework, using **Qwen2-7B** as the language backbone and **SigLIP** as the visual encoder.
|
43 |
+
|
44 |
+
**Key Training Features**
|
45 |
+
|
46 |
+
- **Fixed-Length Visual Tokenization**
|
47 |
+
Each video is uniformly sampled into 64 frames, and each frame is encoded into 210 visual tokens, resulting in a total of **13,440 visual tokens per example**. This fixed-length design ensures consistent memory usage and stable optimization across batches.
|
48 |
+
|
49 |
+
- **Multimodal Alignment via Lightweight Projector**
|
50 |
+
A simple MLP-based projector maps visual embeddings into the language embedding space, enabling effective fusion between video content and textual prompts during both training and inference.
|
51 |
+
|
52 |
+
- **Efficient Distributed Training with DeepSpeed**
|
53 |
+
Training is conducted using **DeepSpeed ZeRO-3 Offload** on **8× NVIDIA H100 80GB GPUs**, with full parameter and optimizer state partitioning across devices. This setup supports large batch sizes and minimizes GPU memory overhead.
|
54 |
+
|
55 |
+
- **Mixed-Precision Computation (fp16)**
|
56 |
+
We adopt **mixed-precision training (fp16)** to accelerate computation and reduce memory usage, without compromising accuracy. This is combined with ZeRO-3 partitioning to further enhance training scalability.
|
57 |
+
|
58 |
+
|
59 |
+
The training was conducted over **55 hours**, covering both base and complex spatial reasoning subsets.
|
60 |
+
|
61 |
+
## Training Dynamics
|
62 |
+
|
63 |
+
<p align="center">
|
64 |
+
<img src="assets/training_record/vica-train_loss_with_ema.svg" width="30%"/>
|
65 |
+
<img src="assets/training_record/vica-train_learning_rate.svg" width="30%"/>
|
66 |
+
<img src="assets/training_record/vica-train_grad_norm.svg" width="30%"/>
|
67 |
+
</p>
|
68 |
+
|
69 |
+
<p align="center">
|
70 |
+
<b>Figure 2:</b> Training loss, learning rate schedule, and gradient norm curves during ViCA-7B fine-tuning.
|
71 |
+
These curves illustrate a stable optimization process and smooth convergence under the DeepSpeed ZeRO-3 setup.
|
72 |
+
</p>
|
73 |
+
|
74 |
+
## Dataset
|
75 |
+
|
76 |
+
ViCA-7B is fine-tuned on two complementary datasets:
|
77 |
+
|
78 |
+
- [**ViCA-322K**](https://huggingface.co/datasets/nkkbr/ViCA-322K):
|
79 |
+
A large-scale dataset covering both **base spatial reasoning tasks** (e.g., object distance, size, count, appearance order) and **complex spatial reasoning tasks** involving natural language questions and scene understanding. This dataset forms the core of the model's spatial reasoning capabilities.
|
80 |
+
|
81 |
+
- [**ViCA-thinking-2.68k**](https://huggingface.co/datasets/nkkbr/ViCA-thinking-2.68k):
|
82 |
+
A focused dataset used for instruction tuning to enhance the model's ability to **generate step-by-step reasoning traces** before outputting final answers. This supports more interpretable and cognitively-aligned response generation.
|
83 |
+
|
84 |
+
For details, please refer to the individual dataset pages linked above.
|
85 |
+
|
86 |
+
## Evaluation: VSI-BENCH Benchmark
|
87 |
+
|
88 |
+
<p align="center">
|
89 |
+
<img src="assets/vsi-bench-table.png" width="800"/>
|
90 |
+
</p>
|
91 |
+
|
92 |
+
<p align="center"><b>Figure 3:</b> Quantitative comparison of ViCA-7B and baseline models on <a href="https://github.com/vision-x-nyu/thinking-in-space">VSI-Bench</a>. ViCA-7B achieves the best overall performance across both numerical and multiple-choice tasks.</p>
|
93 |
+
|
94 |
+
### Effect of CSR Data
|
95 |
+
|
96 |
+
| Configuration | Avg Score |
|
97 |
+
|----------------------|-----------|
|
98 |
+
| Base-only (281K) | 55.39 |
|
99 |
+
| Full with CSR (322K) | **60.14** |
|
100 |
+
|
101 |
+
> CSR(Complex Spatial Reasoning) boosts generalization and **accelerates learning**, with notable performance jumps at intermediate checkpoints (e.g., +2.02 at 50–55%).
|
102 |
+
|
103 |
+
### Data Scale vs. Performance
|
104 |
+
|
105 |
+
Performance improves significantly between **5% → 60%** of data usage. After **80%**, improvements plateau, indicating dataset is well-matched to model capacity.
|
106 |
+
|
107 |
+
<p align="center">
|
108 |
+
<img src="assets/data-scale-csr-effect.svg" width="750"/>
|
109 |
+
</p>
|
110 |
+
|
111 |
+
<p align="center"><b>Figure 4:</b> Performance of ViCA-7B under varying training data sizes (from 5% to 100%). The full dataset (including Complex Spatial Reasoning, CSR) consistently outperforms the base-only configuration. Notably, the CSR-enhanced model shows a +2.02 score jump between 50% and 55%, and a final performance gain of +4.75 at full scale. Performance plateaus beyond 80%, indicating the dataset is well-aligned with the model capacity.</p>
|
112 |
+
|
113 |
+
## Intermediate Checkpoints and Evaluation Outputs
|
114 |
+
|
115 |
+
To support detailed analysis and reproducibility, we provide two sets of intermediate checkpoints saved at every **5% increment** of the training data. These models are trained for a single epoch and are useful for understanding how performance evolves as training progresses.
|
116 |
+
|
117 |
+
We also release the corresponding **raw evaluation outputs** (e.g., `.json` prediction files) for each checkpoint.
|
118 |
+
The evaluation script used to produce these outputs is available in our [GitHub repository](https://github.com/nkkbr/ViCA).
|
119 |
+
|
120 |
+
### Full Dataset (ViCA-322K: Base + CSR)
|
121 |
+
|
122 |
+
This series corresponds to the full training set, including both base spatial reasoning and complex spatial reasoning (CSR):
|
123 |
+
|
124 |
+
| Data Usage | Checkpoint | Data Usage | Checkpoint |
|
125 |
+
| ---------- | --------------------------------------------------------- | ---------- | ----------------------------------------------------------- |
|
126 |
+
| 5% | [`nkkbr/ViCA-5p`](https://huggingface.co/nkkbr/ViCA-5p) | 55% | [`nkkbr/ViCA-55p`](https://huggingface.co/nkkbr/ViCA-55p) |
|
127 |
+
| 10% | [`nkkbr/ViCA-10p`](https://huggingface.co/nkkbr/ViCA-10p) | 60% | [`nkkbr/ViCA-60p`](https://huggingface.co/nkkbr/ViCA-60p) |
|
128 |
+
| 15% | [`nkkbr/ViCA-15p`](https://huggingface.co/nkkbr/ViCA-15p) | 65% | [`nkkbr/ViCA-65p`](https://huggingface.co/nkkbr/ViCA-65p) |
|
129 |
+
| 20% | [`nkkbr/ViCA-20p`](https://huggingface.co/nkkbr/ViCA-20p) | 70% | [`nkkbr/ViCA-70p`](https://huggingface.co/nkkbr/ViCA-70p) |
|
130 |
+
| 25% | [`nkkbr/ViCA-25p`](https://huggingface.co/nkkbr/ViCA-25p) | 75% | [`nkkbr/ViCA-75p`](https://huggingface.co/nkkbr/ViCA-75p) |
|
131 |
+
| 30% | [`nkkbr/ViCA-30p`](https://huggingface.co/nkkbr/ViCA-30p) | 80% | [`nkkbr/ViCA-80p`](https://huggingface.co/nkkbr/ViCA-80p) |
|
132 |
+
| 35% | [`nkkbr/ViCA-35p`](https://huggingface.co/nkkbr/ViCA-35p) | 85% | [`nkkbr/ViCA-85p`](https://huggingface.co/nkkbr/ViCA-85p) |
|
133 |
+
| 40% | [`nkkbr/ViCA-40p`](https://huggingface.co/nkkbr/ViCA-40p) | 90% | [`nkkbr/ViCA-90p`](https://huggingface.co/nkkbr/ViCA-90p) |
|
134 |
+
| 45% | [`nkkbr/ViCA-45p`](https://huggingface.co/nkkbr/ViCA-45p) | 95% | [`nkkbr/ViCA-95p`](https://huggingface.co/nkkbr/ViCA-95p) |
|
135 |
+
| 50% | [`nkkbr/ViCA-50p`](https://huggingface.co/nkkbr/ViCA-50p) | 100% (This repo) | [`nkkbr/ViCA`](https://huggingface.co/nkkbr/ViCA) |
|
136 |
+
|
137 |
+
Raw evaluation outputs are available [here](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_all_data/).
|
138 |
+
|
139 |
+
### Base-only Subset (ViCA-322K: Base)
|
140 |
+
|
141 |
+
This series is trained **only** on the base spatial reasoning subset of ViCA-322K, without any CSR examples:
|
142 |
+
|
143 |
+
| Data Usage | Checkpoint | Data Usage | Checkpoint |
|
144 |
+
| ---------- | ------------------------------------------------------------------- | ---------- | --------------------------------------------------------------------- |
|
145 |
+
| 5% | [`nkkbr/ViCA-base-5p`](https://huggingface.co/nkkbr/ViCA-base-5p) | 55% | [`nkkbr/ViCA-base-55p`](https://huggingface.co/nkkbr/ViCA-base-55p) |
|
146 |
+
| 10% | [`nkkbr/ViCA-base-10p`](https://huggingface.co/nkkbr/ViCA-base-10p) | 60% | [`nkkbr/ViCA-base-60p`](https://huggingface.co/nkkbr/ViCA-base-60p) |
|
147 |
+
| 15% | [`nkkbr/ViCA-base-15p`](https://huggingface.co/nkkbr/ViCA-base-15p) | 65% | [`nkkbr/ViCA-base-65p`](https://huggingface.co/nkkbr/ViCA-base-65p) |
|
148 |
+
| 20% | [`nkkbr/ViCA-base-20p`](https://huggingface.co/nkkbr/ViCA-base-20p) | 70% | [`nkkbr/ViCA-base-70p`](https://huggingface.co/nkkbr/ViCA-base-70p) |
|
149 |
+
| 25% | [`nkkbr/ViCA-base-25p`](https://huggingface.co/nkkbr/ViCA-base-25p) | 75% | [`nkkbr/ViCA-base-75p`](https://huggingface.co/nkkbr/ViCA-base-75p) |
|
150 |
+
| 30% | [`nkkbr/ViCA-base-30p`](https://huggingface.co/nkkbr/ViCA-base-30p) | 80% | [`nkkbr/ViCA-base-80p`](https://huggingface.co/nkkbr/ViCA-base-80p) |
|
151 |
+
| 35% | [`nkkbr/ViCA-base-35p`](https://huggingface.co/nkkbr/ViCA-base-35p) | 85% | [`nkkbr/ViCA-base-85p`](https://huggingface.co/nkkbr/ViCA-base-85p) |
|
152 |
+
| 40% | [`nkkbr/ViCA-base-40p`](https://huggingface.co/nkkbr/ViCA-base-40p) | 90% | [`nkkbr/ViCA-base-90p`](https://huggingface.co/nkkbr/ViCA-base-90p) |
|
153 |
+
| 45% | [`nkkbr/ViCA-base-45p`](https://huggingface.co/nkkbr/ViCA-base-45p) | 95% | [`nkkbr/ViCA-base-95p`](https://huggingface.co/nkkbr/ViCA-base-95p) |
|
154 |
+
| 50% | [`nkkbr/ViCA-base-50p`](https://huggingface.co/nkkbr/ViCA-base-50p) | 100% | [`nkkbr/ViCA-base`](https://huggingface.co/nkkbr/ViCA-base) |
|
155 |
+
|
156 |
+
Raw evaluation outputs are available [here](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_only_base/).
|
157 |
+
|
158 |
+
## Source-wise Checkpoints
|
159 |
+
|
160 |
+
While the full **ViCA-322K** dataset was curated by us, the underlying videos and associated metadata are sourced from three distinct indoor video datasets:
|
161 |
+
|
162 |
+
* **ARKitScenes**
|
163 |
+
* **ScanNet**
|
164 |
+
* **ScanNet++**
|
165 |
+
|
166 |
+
To better understand how each source contributes to model performance, we fine-tuned ViCA-7B on subsets of ViCA-322K that exclusively use data from each source. For each subset, we provide checkpoints trained with **10% increments** of the available data, from 10% to 100%.
|
167 |
+
|
168 |
+
Corresponding **raw evaluation outputs** (e.g., `.json` predictions) are also provided for all checkpoints.
|
169 |
+
|
170 |
+
### ARKitScenes-Only Checkpoints
|
171 |
+
|
172 |
+
| Data Usage | Checkpoint | Data Usage | Checkpoint |
|
173 |
+
| ---------- | --------------------------------------------------------------------------------- | ---------- | ----------------------------------------------------------------------------------- |
|
174 |
+
| 10% | [`nkkbr/ViCA-ARKitScenes-10p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-10p) | 60% | [`nkkbr/ViCA-ARKitScenes-60p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-60p) |
|
175 |
+
| 20% | [`nkkbr/ViCA-ARKitScenes-20p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-20p) | 70% | [`nkkbr/ViCA-ARKitScenes-70p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-70p) |
|
176 |
+
| 30% | [`nkkbr/ViCA-ARKitScenes-30p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-30p) | 80% | [`nkkbr/ViCA-ARKitScenes-80p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-80p) |
|
177 |
+
| 40% | [`nkkbr/ViCA-ARKitScenes-40p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-40p) | 90% | [`nkkbr/ViCA-ARKitScenes-90p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-90p) |
|
178 |
+
| 50% | [`nkkbr/ViCA-ARKitScenes-50p`](https://huggingface.co/nkkbr/ViCA-ARKitScenes-50p) | 100% | [`nkkbr/ViCA-ARKitScenes`](https://huggingface.co/nkkbr/ViCA-ARKitScenes) |
|
179 |
+
|
180 |
+
🔗 Raw evaluation outputs: [ARKitScenes results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_arkitscenes/)
|
181 |
+
|
182 |
+
### ScanNet++-Only Checkpoints
|
183 |
+
|
184 |
+
| Data Usage | Checkpoint | Data Usage | Checkpoint |
|
185 |
+
| ---------- | ----------------------------------------------------------------------------- | ---------- | ------------------------------------------------------------------------------- |
|
186 |
+
| 10% | [`nkkbr/ViCA-ScanNetPP-10p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-10p) | 60% | [`nkkbr/ViCA-ScanNetPP-60p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-60p) |
|
187 |
+
| 20% | [`nkkbr/ViCA-ScanNetPP-20p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-20p) | 70% | [`nkkbr/ViCA-ScanNetPP-70p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-70p) |
|
188 |
+
| 30% | [`nkkbr/ViCA-ScanNetPP-30p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-30p) | 80% | [`nkkbr/ViCA-ScanNetPP-80p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-80p) |
|
189 |
+
| 40% | [`nkkbr/ViCA-ScanNetPP-40p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-40p) | 90% | [`nkkbr/ViCA-ScanNetPP-90p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-90p) |
|
190 |
+
| 50% | [`nkkbr/ViCA-ScanNetPP-50p`](https://huggingface.co/nkkbr/ViCA-ScanNetPP-50p) | 100% | [`nkkbr/ViCA-ScanNetPP`](https://huggingface.co/nkkbr/ViCA-ScanNetPP) |
|
191 |
+
|
192 |
+
🔗 Raw evaluation outputs: [ScanNet++ results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_scannetpp/)
|
193 |
+
|
194 |
+
### ScanNet-Only Checkpoints
|
195 |
+
|
196 |
+
| Data Usage | Checkpoint | Data Usage | Checkpoint |
|
197 |
+
| ---------- | ------------------------------------------------------------------------- | ---------- | --------------------------------------------------------------------------- |
|
198 |
+
| 10% | [`nkkbr/ViCA-ScanNet-10p`](https://huggingface.co/nkkbr/ViCA-ScanNet-10p) | 60% | [`nkkbr/ViCA-ScanNet-60p`](https://huggingface.co/nkkbr/ViCA-ScanNet-60p) |
|
199 |
+
| 20% | [`nkkbr/ViCA-ScanNet-20p`](https://huggingface.co/nkkbr/ViCA-ScanNet-20p) | 70% | [`nkkbr/ViCA-ScanNet-70p`](https://huggingface.co/nkkbr/ViCA-ScanNet-70p) |
|
200 |
+
| 30% | [`nkkbr/ViCA-ScanNet-30p`](https://huggingface.co/nkkbr/ViCA-ScanNet-30p) | 80% | [`nkkbr/ViCA-ScanNet-80p`](https://huggingface.co/nkkbr/ViCA-ScanNet-80p) |
|
201 |
+
| 40% | [`nkkbr/ViCA-ScanNet-40p`](https://huggingface.co/nkkbr/ViCA-ScanNet-40p) | 90% | [`nkkbr/ViCA-ScanNet-90p`](https://huggingface.co/nkkbr/ViCA-ScanNet-90p) |
|
202 |
+
| 50% | [`nkkbr/ViCA-ScanNet-50p`](https://huggingface.co/nkkbr/ViCA-ScanNet-50p) | 100% | [`nkkbr/ViCA-ScanNet`](https://huggingface.co/nkkbr/ViCA-ScanNet) |
|
203 |
+
|
204 |
+
🔗 Raw evaluation outputs: [ScanNet results](https://huggingface.co/nkkbr/ViCA/tree/main/raw_evaluation_outputs/vsi-bench_scannet/)
|
205 |
+
|
206 |
+
## Additional Probing
|
207 |
+
|
208 |
+
### Time Instructions
|
209 |
+
|
210 |
+
Including 64 frame timestamps in the prompt slightly **hurts** performance, suggesting that models fail to leverage temporal alignment and are negatively impacted by instruction verbosity.
|
211 |
+
|
212 |
+
<p align="center">
|
213 |
+
<img src="assets/table3.png" width="400"/>
|
214 |
+
</p>
|
215 |
+
|
216 |
+
<p align="center"><b>Figure 5:</b> Adding explicit frame timestamps (64 values) degrades model performance on VSI-Bench, indicating an inability to exploit temporal alignment and sensitivity to prompt length.</p>
|
217 |
+
|
218 |
+
---
|
219 |
+
|
220 |
+
### More Frames
|
221 |
+
|
222 |
+
Increasing input from 64 to 128 frames doubles the number of visual tokens (13,440 → 26,880) but yields **no performance gain**, highlighting overfitting to fixed token length and architectural inflexibility.
|
223 |
+
|
224 |
+
<p align="center">
|
225 |
+
<img src="assets/table2.png" width="400"/>
|
226 |
+
</p>
|
227 |
+
|
228 |
+
<p align="center"><b>Figure 6:</b> Comparison between 64-frame and 128-frame inputs. Despite doubling the visual token count, performance remains unchanged, indicating overfitting to fixed-length input and limited adaptability to variable-length sequences.</p>
|
229 |
+
|
230 |
+
## Potential Applications
|
231 |
+
|
232 |
+
ViCA-7B supports a broad range of spatially grounded multimodal applications:
|
233 |
+
- **Indoor navigation assistants**
|
234 |
+
- **Robotics planning and spatial querying**
|
235 |
+
- **Smart room arrangement and AR layout analysis**
|
236 |
+
- **Scene understanding for embodied AI agents**
|
237 |
+
|
238 |
+
## Known Limitations
|
239 |
+
|
240 |
+
- Limited temporal reasoning: Time instructions not effectively utilized
|
241 |
+
- Frame scaling issues: Models expect fixed input lengths
|
242 |
+
- No depth/point cloud: Only RGB video input supported
|
243 |
+
- Zero-shot generalization is good, but not task-agnostic
|
244 |
+
|
245 |
+
## Inference
|
246 |
+
|
247 |
+
*Here is a runnable example using ViCA-7B on a VSI-Bench question.*
|
248 |
+
|
249 |
+
```python
|
250 |
+
# This inference script is adapted from:
|
251 |
+
# https://huggingface.co/lmms-lab/LLaVA-Video-7B-Qwen2
|
252 |
+
|
253 |
+
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
|
254 |
+
from llava.model.builder import load_pretrained_model
|
255 |
+
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
|
256 |
+
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
|
257 |
+
from llava.conversation import conv_templates, SeparatorStyle
|
258 |
+
from PIL import Image
|
259 |
+
import requests
|
260 |
+
import copy
|
261 |
+
import torch
|
262 |
+
import sys
|
263 |
+
import warnings
|
264 |
+
from decord import VideoReader, cpu
|
265 |
+
import numpy as np
|
266 |
+
import json
|
267 |
+
from tqdm import tqdm
|
268 |
+
import os
|
269 |
+
|
270 |
+
warnings.filterwarnings("ignore")
|
271 |
+
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
|
272 |
+
if max_frames_num == 0:
|
273 |
+
return np.zeros((1, 336, 336, 3))
|
274 |
+
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
|
275 |
+
total_frame_num = len(vr)
|
276 |
+
video_time = total_frame_num / vr.get_avg_fps()
|
277 |
+
fps = round(vr.get_avg_fps()/fps)
|
278 |
+
frame_idx = [i for i in range(0, len(vr), fps)]
|
279 |
+
frame_time = [i/fps for i in frame_idx]
|
280 |
+
if len(frame_idx) > max_frames_num or force_sample:
|
281 |
+
sample_fps = max_frames_num
|
282 |
+
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
|
283 |
+
frame_idx = uniform_sampled_frames.tolist()
|
284 |
+
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
|
285 |
+
frame_time = ",".join([f"{i:.2f}s" for i in frame_time])
|
286 |
+
spare_frames = vr.get_batch(frame_idx).asnumpy()
|
287 |
+
# import pdb;pdb.set_trace()
|
288 |
+
return spare_frames,frame_time,video_time
|
289 |
+
pretrained = 'nkkbr/ViCA'
|
290 |
+
model_name = "llava_qwen"
|
291 |
+
device = "cuda"
|
292 |
+
device_map = "auto"
|
293 |
+
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map) # Add any other thing you want to pass in llava_model_args
|
294 |
+
model.eval()
|
295 |
+
|
296 |
+
|
297 |
+
from datasets import load_dataset
|
298 |
+
vsi_bench = load_dataset("nyu-visionx/VSI-Bench")
|
299 |
+
vsi_bench = vsi_bench['test']
|
300 |
+
|
301 |
+
data_curr = vsi_bench[1000]
|
302 |
+
|
303 |
+
video_path = f"[VIDEO PATH]"
|
304 |
+
max_frames_num = 64
|
305 |
+
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
|
306 |
+
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
|
307 |
+
video = [video]
|
308 |
+
conv_template = "qwen_1_5"
|
309 |
+
# time_instruciton = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. These frames are located at {frame_time}.Please answer the following questions related to this video."
|
310 |
+
time_instruciton = ""
|
311 |
+
|
312 |
+
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruciton}\n\n"
|
313 |
+
question += f"These are frames of a video.\n\n"
|
314 |
+
question += f"Question: {data_curr['question']}\n"
|
315 |
+
if data_curr['options'] is not None:
|
316 |
+
question += '\n'.join(data_curr['options']) + "\n"
|
317 |
+
question += f"Answer with the option’s letter from the given choices directly.\n"
|
318 |
+
else:
|
319 |
+
question += f"Please answer the question using a single word or phrase.\n"
|
320 |
+
print(f"Prompt:\n{question}")
|
321 |
+
|
322 |
+
conv = copy.deepcopy(conv_templates[conv_template])
|
323 |
+
conv.append_message(conv.roles[0], question)
|
324 |
+
conv.append_message(conv.roles[1], None)
|
325 |
+
prompt_question = conv.get_prompt()
|
326 |
+
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
|
327 |
+
|
328 |
+
cont = model.generate(
|
329 |
+
input_ids,
|
330 |
+
images=video,
|
331 |
+
modalities= ["video"],
|
332 |
+
do_sample=False,
|
333 |
+
temperature=0,
|
334 |
+
max_new_tokens=1024,
|
335 |
+
)
|
336 |
+
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
|
337 |
+
|
338 |
+
print(repr(text_outputs))
|
339 |
+
```
|
340 |
+
|
341 |
---
|
342 |
+
|
assets/data-scale-csr-effect.svg
ADDED
|
assets/table2.png
ADDED
![]() |
Git LFS Details
|
assets/table3.png
ADDED
![]() |
Git LFS Details
|
assets/training_record/vica-train_grad_norm.svg
ADDED
|
assets/training_record/vica-train_learning_rate.svg
ADDED
|
assets/training_record/vica-train_loss_with_ema.svg
ADDED
|
assets/vsi-bench-comparison.svg
ADDED
|
assets/vsi-bench-table.png
ADDED
![]() |
Git LFS Details
|