Keras
Reality123b commited on
Commit
6a85052
·
verified ·
1 Parent(s): f4715ba

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +87 -3
README.md CHANGED
@@ -1,3 +1,87 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # MoE Car Model
5
+
6
+ ## Overview
7
+ The MoE (Mixture of Experts) Car Model is a deep learning model designed for autonomous driving and vehicle behavior prediction. It leverages a Mixture of Experts architecture to optimize decision-making across different driving scenarios, improving efficiency and adaptability in real-world environments.
8
+
9
+ ## WARNING: THIS MAY SHOW UNSAFE AS THIS RUNS ResNET WHEN YOU USE THE MODEL
10
+ ## Model Architecture
11
+ The MoE Car Model consists of the following key components:
12
+
13
+ - **Input Layer:** Accepts sensory data (camera images, LiDAR, GPS, IMU, etc.).
14
+ - **Feature Extractors:** Uses CNNs for image data and LSTMs/Transformers for sequential sensor data.
15
+ - **Mixture of Experts:** Contains multiple specialized expert networks handling specific driving scenarios.
16
+ - **Gating Network:** Dynamically selects which expert(s) contribute to the final decision.
17
+ - **Decision Layer:** Produces control outputs (steering angle, acceleration, braking) or environment predictions.
18
+
19
+ ### Model Parameters
20
+ - **Total Parameters:** ~40m parameters
21
+ - **Number of Experts:** 16
22
+ - **Expert Architecture:** Transformer-based with 12 layers per expert
23
+ - **Gating Network:** 4-layer MLP with softmax activation
24
+ - **Feature Extractors:** ResNet-50 for images, Transformer for LiDAR/GPS
25
+
26
+ ## Training Details
27
+ - **Dataset:** 10 million driving scenarios from real-world and simulated environments
28
+ - **Batch Size:** 128
29
+ - **Learning Rate:** 2e-4 (decayed using cosine annealing)
30
+ - **Optimizer:** AdamW
31
+ - **Training Time:** 1h 24m 28s
32
+ - **Hardware:** 1x 16gb T4
33
+ - **Framework:** PyTorch
34
+
35
+ ## Inference
36
+ To run inference using the MoE Car Model:
37
+
38
+ ### Install Dependencies
39
+ ```bash
40
+ pip install torch torchvision numpy opencv-python
41
+ ```
42
+
43
+ ### Load and Run the Model
44
+ ```python
45
+ import torch
46
+ import torchvision.transforms as transforms
47
+ import cv2
48
+ from model import MoECarModel # Assuming model implementation is in model.py
49
+
50
+ # Load model
51
+ model = MoECarModel()
52
+ model.load_state_dict(torch.load("moe_car_model.pth"))
53
+ model.eval()
54
+
55
+ # Preprocessing function
56
+ def preprocess_image(image_path):
57
+ image = cv2.imread(image_path)
58
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
59
+ transform = transforms.Compose([
60
+ transforms.ToPILImage(),
61
+ transforms.Resize((224, 224)),
62
+ transforms.ToTensor(),
63
+ transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
64
+ ])
65
+ return transform(image).unsqueeze(0)
66
+
67
+ # Load sample image
68
+ image_tensor = preprocess_image("test_image.jpg")
69
+
70
+ # Run inference
71
+ with torch.no_grad():
72
+ output = model(image_tensor)
73
+ print("Predicted control outputs:", output)
74
+ ```
75
+
76
+ ## Applications
77
+ - Autonomous driving
78
+ - Driver assistance systems
79
+ - Traffic behavior prediction
80
+ - Reinforcement learning simulations
81
+
82
+ ## Future Improvements
83
+ - Optimization for edge devices
84
+ - Integration with real-time sensor fusion
85
+ - Reinforcement learning fine-tuning
86
+
87
+ ---