Push to Hub
Browse files- DQN-CartPole-v1.zip +3 -0
- DQN-CartPole-v1/_stable_baselines3_version +1 -0
- DQN-CartPole-v1/data +131 -0
- DQN-CartPole-v1/policy.optimizer.pth +3 -0
- DQN-CartPole-v1/policy.pth +3 -0
- DQN-CartPole-v1/pytorch_variables.pth +3 -0
- DQN-CartPole-v1/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
DQN-CartPole-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2276fad8f6fbd86e2a38762bc314105bb061defc55f6a153c9bef8e01617d957
|
3 |
+
size 558036
|
DQN-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
DQN-CartPole-v1/data
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.dqn.policies",
|
6 |
+
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
+
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7fd607686c20>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7fd607686cb0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7fd607686d40>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7fd607686dd0>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7fd607686e60>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd607686ef0>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd607686f80>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd6076ac980>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
":type:": "<class 'dict'>",
|
21 |
+
":serialized:": "gAWVUgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChLwE0AAUtAZXUu",
|
22 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
23 |
+
"net_arch": [
|
24 |
+
192,
|
25 |
+
256,
|
26 |
+
64
|
27 |
+
]
|
28 |
+
},
|
29 |
+
"num_timesteps": 10000,
|
30 |
+
"_total_timesteps": 10000,
|
31 |
+
"_num_timesteps_at_start": 0,
|
32 |
+
"seed": null,
|
33 |
+
"action_noise": null,
|
34 |
+
"start_time": 1698225555164194135,
|
35 |
+
"learning_rate": 0.0001,
|
36 |
+
"tensorboard_log": null,
|
37 |
+
"_last_obs": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAK5izrqkikE8Gva9PMlVVbyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'numpy.ndarray'>",
|
47 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAALu8CDv+cTu+rRCRPPRMjD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
48 |
+
},
|
49 |
+
"_episode_num": 451,
|
50 |
+
"use_sde": false,
|
51 |
+
"sde_sample_freq": -1,
|
52 |
+
"_current_progress_remaining": 0.0,
|
53 |
+
"_stats_window_size": 100,
|
54 |
+
"ep_info_buffer": {
|
55 |
+
":type:": "<class 'collections.deque'>",
|
56 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCoAAAAAAACMAWyUSw2MAXSUR0BjDuAVfu1GdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjDwWgvlEJdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjDxKxs2vTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjDxx3mmtRdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0BjD0YZVGTcdX2UKGgGR0BBAAAAAAAAaAdLImgIR0BjD2ws5GSZdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjD4L1EmY0dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD4zYVZcLdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjD50r9VFQdX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjD89dNWU9dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD9fLLZBcdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjD+3fAKv3dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjD/WOIZZTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEBNsWO6vdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEB1Ng0CSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEC4MF2V3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEDbzshPkdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEFLYf4h2dX2UKGgGR0BKgAAAAAAAaAdLNWgIR0BjEHh/Aj6fdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEIrz5GjLdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjEKiItUXIdX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BjENQ0oBq9dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEOBas6q9dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEO1D0DlpdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEPfMwDeTdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjERe9i+cpdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjESDCgsbvdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjES4MF2V3dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjETihnJ1adX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjEVNWU8msdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEWPYFqzrdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEXKr7wazdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEYHE/B3zdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEZ1LamGedX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEatV7x/edX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEbeGfwqidX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEb8+A3DOdX2UKGgGR0BSAAAAAAAAaAdLSGgIR0BjEf4IrvsrdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEhUo8ZDRdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEhzBAOawdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjEieyzHCGdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEkl9jPOZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjElz8xbjcdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEmwLVnVYdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjEnIS13MZdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0BjEo55qubJdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEpxFRYRvdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEqMR6F/QdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjErcbiqACdX2UKGgGR0BGAAAAAAAAaAdLLGgIR0BjEugWac7RdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEvKr7wazdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEv668QI2dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEw0O3DvWdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjEyup0fYBdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEzbi6xxDdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE0X7+DODdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjE1cry1/ldX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjE4YixFAndX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjE5AUtZmqdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE6sZHd43dX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjE7zoUzsQdX2UKGgGR0BCgAAAAAAAaAdLJWgIR0BjE+SpzcREdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjE+z0HyEtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjE/Ux20RfdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFAYk3S8bdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFCw0O3DvdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjFDyvs7dSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFESoOx0NdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFHK8tf5UdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjFJ6F/QSjdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjFKa/h2nsdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFLIcR15jdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFL5bhWHUdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFNaKUFB6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFO67NB4VdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjFPuG9HtndX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFQe3hGYsdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFSeK8+RpdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFTebd8ArdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFUDMeOn3dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFVN5+pfhdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFXLX+VC5dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjFYLLIPsidX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFZPj4pMIdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFZ60IC2ddX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFcolUp/gdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjFdC5VfeDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFdkDp1RtdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFeLFXJYDdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BjFf0XgtOEdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFgSFoL5RdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFg3gk1MudX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFhx5s0pFdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFjXQMQVcdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFkEPlMh6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFlvMr3CbdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFmaz/p+udX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFobIcR16dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFpBE8aGYdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFqLyc0+DdWUu"
|
57 |
+
},
|
58 |
+
"ep_success_buffer": {
|
59 |
+
":type:": "<class 'collections.deque'>",
|
60 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
61 |
+
},
|
62 |
+
"_n_updates": 0,
|
63 |
+
"observation_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
+
":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
66 |
+
"dtype": "float32",
|
67 |
+
"bounded_below": "[ True True True True]",
|
68 |
+
"bounded_above": "[ True True True True]",
|
69 |
+
"_shape": [
|
70 |
+
4
|
71 |
+
],
|
72 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
73 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
74 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
75 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
76 |
+
"_np_random": null
|
77 |
+
},
|
78 |
+
"action_space": {
|
79 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
80 |
+
":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQglJ+ineOsQRLEPou+SCJT4wDaW5jlIoRSUKbcSEs+4gFqd1rKJV56AB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBWcpWYgAdWJ1Yi4=",
|
81 |
+
"n": "2",
|
82 |
+
"start": "0",
|
83 |
+
"_shape": [],
|
84 |
+
"dtype": "int64",
|
85 |
+
"_np_random": "Generator(PCG64)"
|
86 |
+
},
|
87 |
+
"n_envs": 1,
|
88 |
+
"buffer_size": 1000000,
|
89 |
+
"batch_size": 32,
|
90 |
+
"learning_starts": 50000,
|
91 |
+
"tau": 1.0,
|
92 |
+
"gamma": 0.99,
|
93 |
+
"gradient_steps": 1,
|
94 |
+
"optimize_memory_usage": false,
|
95 |
+
"replay_buffer_class": {
|
96 |
+
":type:": "<class 'abc.ABCMeta'>",
|
97 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
98 |
+
"__module__": "stable_baselines3.common.buffers",
|
99 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
100 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fd6076772e0>",
|
101 |
+
"add": "<function ReplayBuffer.add at 0x7fd607677370>",
|
102 |
+
"sample": "<function ReplayBuffer.sample at 0x7fd607677400>",
|
103 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fd607677490>",
|
104 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fd607677520>)>",
|
105 |
+
"__abstractmethods__": "frozenset()",
|
106 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fd60767a700>"
|
107 |
+
},
|
108 |
+
"replay_buffer_kwargs": {},
|
109 |
+
"train_freq": {
|
110 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
111 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
112 |
+
},
|
113 |
+
"use_sde_at_warmup": false,
|
114 |
+
"exploration_initial_eps": 1.0,
|
115 |
+
"exploration_final_eps": 0.05,
|
116 |
+
"exploration_fraction": 0.1,
|
117 |
+
"target_update_interval": 10000,
|
118 |
+
"_n_calls": 10000,
|
119 |
+
"max_grad_norm": 10,
|
120 |
+
"exploration_rate": 0.05,
|
121 |
+
"lr_schedule": {
|
122 |
+
":type:": "<class 'function'>",
|
123 |
+
":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
124 |
+
},
|
125 |
+
"batch_norm_stats": [],
|
126 |
+
"batch_norm_stats_target": [],
|
127 |
+
"exploration_schedule": {
|
128 |
+
":type:": "<class 'function'>",
|
129 |
+
":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
130 |
+
}
|
131 |
+
}
|
DQN-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa3175b3483d31c82d0109a94f34d6926aeb5a4bf435b414211bf9cae735711d
|
3 |
+
size 687
|
DQN-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1405feb72c3991f3a4bb9e000dc06603bff4a4a95f785510aa1a2d7271849bdf
|
3 |
+
size 540725
|
DQN-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
DQN-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.1
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- CartPole-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DQN
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 10.60 +/- 0.80
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DQN** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **DQN** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fd607686c20>", "_build": "<function DQNPolicy._build at 0x7fd607686cb0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd607686d40>", "forward": "<function DQNPolicy.forward at 0x7fd607686dd0>", "_predict": "<function DQNPolicy._predict at 0x7fd607686e60>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd607686ef0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd607686f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6076ac980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChLwE0AAUtAZXUu", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [192, 256, 64]}, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698225555164194135, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAK5izrqkikE8Gva9PMlVVbyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAALu8CDv+cTu+rRCRPPRMjD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 451, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCoAAAAAAACMAWyUSw2MAXSUR0BjDuAVfu1GdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjDwWgvlEJdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjDxKxs2vTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjDxx3mmtRdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0BjD0YZVGTcdX2UKGgGR0BBAAAAAAAAaAdLImgIR0BjD2ws5GSZdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjD4L1EmY0dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD4zYVZcLdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjD50r9VFQdX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjD89dNWU9dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD9fLLZBcdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjD+3fAKv3dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjD/WOIZZTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEBNsWO6vdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEB1Ng0CSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEC4MF2V3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEDbzshPkdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEFLYf4h2dX2UKGgGR0BKgAAAAAAAaAdLNWgIR0BjEHh/Aj6fdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEIrz5GjLdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjEKiItUXIdX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BjENQ0oBq9dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEOBas6q9dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEO1D0DlpdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEPfMwDeTdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjERe9i+cpdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjESDCgsbvdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjES4MF2V3dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjETihnJ1adX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjEVNWU8msdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEWPYFqzrdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEXKr7wazdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEYHE/B3zdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEZ1LamGedX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEatV7x/edX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEbeGfwqidX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEb8+A3DOdX2UKGgGR0BSAAAAAAAAaAdLSGgIR0BjEf4IrvsrdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEhUo8ZDRdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEhzBAOawdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjEieyzHCGdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEkl9jPOZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjElz8xbjcdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEmwLVnVYdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjEnIS13MZdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0BjEo55qubJdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEpxFRYRvdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEqMR6F/QdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjErcbiqACdX2UKGgGR0BGAAAAAAAAaAdLLGgIR0BjEugWac7RdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEvKr7wazdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEv668QI2dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEw0O3DvWdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjEyup0fYBdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEzbi6xxDdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE0X7+DODdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjE1cry1/ldX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjE4YixFAndX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjE5AUtZmqdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE6sZHd43dX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjE7zoUzsQdX2UKGgGR0BCgAAAAAAAaAdLJWgIR0BjE+SpzcREdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjE+z0HyEtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjE/Ux20RfdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFAYk3S8bdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFCw0O3DvdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjFDyvs7dSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFESoOx0NdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFHK8tf5UdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjFJ6F/QSjdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjFKa/h2nsdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFLIcR15jdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFL5bhWHUdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFNaKUFB6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFO67NB4VdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjFPuG9HtndX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFQe3hGYsdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFSeK8+RpdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFTebd8ArdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFUDMeOn3dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFVN5+pfhdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFXLX+VC5dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjFYLLIPsidX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFZPj4pMIdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFZ60IC2ddX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFcolUp/gdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjFdC5VfeDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFdkDp1RtdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFeLFXJYDdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BjFf0XgtOEdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFgSFoL5RdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFg3gk1MudX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFhx5s0pFdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFjXQMQVcdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFkEPlMh6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFlvMr3CbdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFmaz/p+udX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFobIcR16dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFpBE8aGYdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFqLyc0+DdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQglJ+ineOsQRLEPou+SCJT4wDaW5jlIoRSUKbcSEs+4gFqd1rKJV56AB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBWcpWYgAdWJ1Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fd6076772e0>", "add": "<function ReplayBuffer.add at 0x7fd607677370>", "sample": "<function ReplayBuffer.sample at 0x7fd607677400>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd607677490>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fd607677520>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd60767a700>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 10000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.25.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
ADDED
Binary file (112 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 10.6, "std_reward": 0.7999999999999999, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T15:01:14.316186"}
|