nsanghi commited on
Commit
6ac7164
·
1 Parent(s): 1ed122e

Push to Hub

Browse files
DQN-CartPole-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2276fad8f6fbd86e2a38762bc314105bb061defc55f6a153c9bef8e01617d957
3
+ size 558036
DQN-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
DQN-CartPole-v1/data ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
7
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
8
+ "__init__": "<function DQNPolicy.__init__ at 0x7fd607686c20>",
9
+ "_build": "<function DQNPolicy._build at 0x7fd607686cb0>",
10
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd607686d40>",
11
+ "forward": "<function DQNPolicy.forward at 0x7fd607686dd0>",
12
+ "_predict": "<function DQNPolicy._predict at 0x7fd607686e60>",
13
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd607686ef0>",
14
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd607686f80>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7fd6076ac980>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ ":type:": "<class 'dict'>",
21
+ ":serialized:": "gAWVUgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChLwE0AAUtAZXUu",
22
+ "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
23
+ "net_arch": [
24
+ 192,
25
+ 256,
26
+ 64
27
+ ]
28
+ },
29
+ "num_timesteps": 10000,
30
+ "_total_timesteps": 10000,
31
+ "_num_timesteps_at_start": 0,
32
+ "seed": null,
33
+ "action_noise": null,
34
+ "start_time": 1698225555164194135,
35
+ "learning_rate": 0.0001,
36
+ "tensorboard_log": null,
37
+ "_last_obs": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAK5izrqkikE8Gva9PMlVVbyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'numpy.ndarray'>",
47
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAALu8CDv+cTu+rRCRPPRMjD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
48
+ },
49
+ "_episode_num": 451,
50
+ "use_sde": false,
51
+ "sde_sample_freq": -1,
52
+ "_current_progress_remaining": 0.0,
53
+ "_stats_window_size": 100,
54
+ "ep_info_buffer": {
55
+ ":type:": "<class 'collections.deque'>",
56
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCoAAAAAAACMAWyUSw2MAXSUR0BjDuAVfu1GdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjDwWgvlEJdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjDxKxs2vTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjDxx3mmtRdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0BjD0YZVGTcdX2UKGgGR0BBAAAAAAAAaAdLImgIR0BjD2ws5GSZdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjD4L1EmY0dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD4zYVZcLdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjD50r9VFQdX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjD89dNWU9dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD9fLLZBcdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjD+3fAKv3dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjD/WOIZZTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEBNsWO6vdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEB1Ng0CSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEC4MF2V3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEDbzshPkdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEFLYf4h2dX2UKGgGR0BKgAAAAAAAaAdLNWgIR0BjEHh/Aj6fdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEIrz5GjLdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjEKiItUXIdX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BjENQ0oBq9dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEOBas6q9dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEO1D0DlpdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEPfMwDeTdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjERe9i+cpdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjESDCgsbvdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjES4MF2V3dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjETihnJ1adX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjEVNWU8msdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEWPYFqzrdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEXKr7wazdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEYHE/B3zdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEZ1LamGedX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEatV7x/edX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEbeGfwqidX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEb8+A3DOdX2UKGgGR0BSAAAAAAAAaAdLSGgIR0BjEf4IrvsrdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEhUo8ZDRdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEhzBAOawdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjEieyzHCGdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEkl9jPOZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjElz8xbjcdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEmwLVnVYdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjEnIS13MZdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0BjEo55qubJdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEpxFRYRvdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEqMR6F/QdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjErcbiqACdX2UKGgGR0BGAAAAAAAAaAdLLGgIR0BjEugWac7RdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEvKr7wazdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEv668QI2dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEw0O3DvWdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjEyup0fYBdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEzbi6xxDdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE0X7+DODdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjE1cry1/ldX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjE4YixFAndX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjE5AUtZmqdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE6sZHd43dX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjE7zoUzsQdX2UKGgGR0BCgAAAAAAAaAdLJWgIR0BjE+SpzcREdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjE+z0HyEtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjE/Ux20RfdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFAYk3S8bdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFCw0O3DvdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjFDyvs7dSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFESoOx0NdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFHK8tf5UdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjFJ6F/QSjdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjFKa/h2nsdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFLIcR15jdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFL5bhWHUdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFNaKUFB6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFO67NB4VdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjFPuG9HtndX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFQe3hGYsdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFSeK8+RpdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFTebd8ArdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFUDMeOn3dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFVN5+pfhdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFXLX+VC5dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjFYLLIPsidX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFZPj4pMIdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFZ60IC2ddX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFcolUp/gdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjFdC5VfeDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFdkDp1RtdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFeLFXJYDdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BjFf0XgtOEdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFgSFoL5RdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFg3gk1MudX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFhx5s0pFdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFjXQMQVcdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFkEPlMh6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFlvMr3CbdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFmaz/p+udX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFobIcR16dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFpBE8aGYdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFqLyc0+DdWUu"
57
+ },
58
+ "ep_success_buffer": {
59
+ ":type:": "<class 'collections.deque'>",
60
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
61
+ },
62
+ "_n_updates": 0,
63
+ "observation_space": {
64
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
65
+ ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
66
+ "dtype": "float32",
67
+ "bounded_below": "[ True True True True]",
68
+ "bounded_above": "[ True True True True]",
69
+ "_shape": [
70
+ 4
71
+ ],
72
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
73
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
74
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
75
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
76
+ "_np_random": null
77
+ },
78
+ "action_space": {
79
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
80
+ ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQglJ+ineOsQRLEPou+SCJT4wDaW5jlIoRSUKbcSEs+4gFqd1rKJV56AB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBWcpWYgAdWJ1Yi4=",
81
+ "n": "2",
82
+ "start": "0",
83
+ "_shape": [],
84
+ "dtype": "int64",
85
+ "_np_random": "Generator(PCG64)"
86
+ },
87
+ "n_envs": 1,
88
+ "buffer_size": 1000000,
89
+ "batch_size": 32,
90
+ "learning_starts": 50000,
91
+ "tau": 1.0,
92
+ "gamma": 0.99,
93
+ "gradient_steps": 1,
94
+ "optimize_memory_usage": false,
95
+ "replay_buffer_class": {
96
+ ":type:": "<class 'abc.ABCMeta'>",
97
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
98
+ "__module__": "stable_baselines3.common.buffers",
99
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
100
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fd6076772e0>",
101
+ "add": "<function ReplayBuffer.add at 0x7fd607677370>",
102
+ "sample": "<function ReplayBuffer.sample at 0x7fd607677400>",
103
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd607677490>",
104
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fd607677520>)>",
105
+ "__abstractmethods__": "frozenset()",
106
+ "_abc_impl": "<_abc._abc_data object at 0x7fd60767a700>"
107
+ },
108
+ "replay_buffer_kwargs": {},
109
+ "train_freq": {
110
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
111
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
112
+ },
113
+ "use_sde_at_warmup": false,
114
+ "exploration_initial_eps": 1.0,
115
+ "exploration_final_eps": 0.05,
116
+ "exploration_fraction": 0.1,
117
+ "target_update_interval": 10000,
118
+ "_n_calls": 10000,
119
+ "max_grad_norm": 10,
120
+ "exploration_rate": 0.05,
121
+ "lr_schedule": {
122
+ ":type:": "<class 'function'>",
123
+ ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
124
+ },
125
+ "batch_norm_stats": [],
126
+ "batch_norm_stats_target": [],
127
+ "exploration_schedule": {
128
+ ":type:": "<class 'function'>",
129
+ ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
130
+ }
131
+ }
DQN-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa3175b3483d31c82d0109a94f34d6926aeb5a4bf435b414211bf9cae735711d
3
+ size 687
DQN-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1405feb72c3991f3a4bb9e000dc06603bff4a4a95f785510aa1a2d7271849bdf
3
+ size 540725
DQN-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.0.1+cu117
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.1
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - CartPole-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 10.60 +/- 0.80
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **CartPole-v1**
25
+ This is a trained model of a **DQN** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fd607686c20>", "_build": "<function DQNPolicy._build at 0x7fd607686cb0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fd607686d40>", "forward": "<function DQNPolicy.forward at 0x7fd607686dd0>", "_predict": "<function DQNPolicy._predict at 0x7fd607686e60>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fd607686ef0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fd607686f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd6076ac980>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVUgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARSZUxVlJOUjAhuZXRfYXJjaJRdlChLwE0AAUtAZXUu", "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [192, 256, 64]}, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698225555164194135, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAK5izrqkikE8Gva9PMlVVbyUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAALu8CDv+cTu+rRCRPPRMjD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_episode_num": 451, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCoAAAAAAACMAWyUSw2MAXSUR0BjDuAVfu1GdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjDwWgvlEJdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjDxKxs2vTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjDxx3mmtRdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0BjD0YZVGTcdX2UKGgGR0BBAAAAAAAAaAdLImgIR0BjD2ws5GSZdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjD4L1EmY0dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD4zYVZcLdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjD50r9VFQdX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjD89dNWU9dX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjD9fLLZBcdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjD+3fAKv3dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjD/WOIZZTdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEBNsWO6vdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEB1Ng0CSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEC4MF2V3dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEDbzshPkdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEFLYf4h2dX2UKGgGR0BKgAAAAAAAaAdLNWgIR0BjEHh/Aj6fdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEIrz5GjLdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0BjEKiItUXIdX2UKGgGR0BFAAAAAAAAaAdLKmgIR0BjENQ0oBq9dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEOBas6q9dX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEO1D0DlpdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEPfMwDeTdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjERe9i+cpdX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjESDCgsbvdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjES4MF2V3dX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjETihnJ1adX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjEVNWU8msdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjEWPYFqzrdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEXKr7wazdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjEYHE/B3zdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEZ1LamGedX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjEatV7x/edX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjEbeGfwqidX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEb8+A3DOdX2UKGgGR0BSAAAAAAAAaAdLSGgIR0BjEf4IrvsrdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjEhUo8ZDRdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEhzBAOawdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjEieyzHCGdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEkl9jPOZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjElz8xbjcdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjEmwLVnVYdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjEnIS13MZdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0BjEo55qubJdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEpxFRYRvdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjEqMR6F/QdX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjErcbiqACdX2UKGgGR0BGAAAAAAAAaAdLLGgIR0BjEugWac7RdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEvKr7wazdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjEv668QI2dX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjEw0O3DvWdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjEyup0fYBdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0BjEzbi6xxDdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE0X7+DODdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjE1cry1/ldX2UKGgGR0BLgAAAAAAAaAdLN2gIR0BjE4YixFAndX2UKGgGR0AuAAAAAAAAaAdLD2gIR0BjE5AUtZmqdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjE6sZHd43dX2UKGgGR0A9AAAAAAAAaAdLHWgIR0BjE7zoUzsQdX2UKGgGR0BCgAAAAAAAaAdLJWgIR0BjE+SpzcREdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjE+z0HyEtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjE/Ux20RfdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFAYk3S8bdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFCw0O3DvdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0BjFDyvs7dSdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFESoOx0NdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFHK8tf5UdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0BjFJ6F/QSjdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0BjFKa/h2nsdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFLIcR15jdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0BjFL5bhWHUdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFNaKUFB6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFO67NB4VdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0BjFPuG9HtndX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFQe3hGYsdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFSeK8+RpdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFTebd8ArdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFUDMeOn3dX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFVN5+pfhdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFXLX+VC5dX2UKGgGR0A1AAAAAAAAaAdLFWgIR0BjFYLLIPsidX2UKGgGR0A0AAAAAAAAaAdLFGgIR0BjFZPj4pMIdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFZ60IC2ddX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFcolUp/gdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0BjFdC5VfeDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFdkDp1RtdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFeLFXJYDdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0BjFf0XgtOEdX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFgSFoL5RdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0BjFg3gk1MudX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFhx5s0pFdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0BjFjXQMQVcdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0BjFkEPlMh6dX2UKGgGR0BEAAAAAAAAaAdLKGgIR0BjFlvMr3CbdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0BjFmaz/p+udX2UKGgGR0A4AAAAAAAAaAdLGGgIR0BjFobIcR16dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0BjFpBE8aGYdX2UKGgGR0A8AAAAAAAAaAdLHGgIR0BjFqLyc0+DdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVFgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVpAEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooQglJ+ineOsQRLEPou+SCJT4wDaW5jlIoRSUKbcSEs+4gFqd1rKJV56AB1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpSKBWcpWYgAdWJ1Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fd6076772e0>", "add": "<function ReplayBuffer.add at 0x7fd607677370>", "sample": "<function ReplayBuffer.sample at 0x7fd607677400>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fd607677490>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fd607677520>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fd60767a700>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 10000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.25.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
replay.mp4 ADDED
Binary file (112 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 10.6, "std_reward": 0.7999999999999999, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T15:01:14.316186"}