Push to Hub
Browse files- DQN-FlappyBird-v0.zip +2 -2
- DQN-FlappyBird-v0/data +26 -26
- DQN-FlappyBird-v0/policy.optimizer.pth +2 -2
- DQN-FlappyBird-v0/policy.pth +2 -2
- DQN-FlappyBird-v0/pytorch_variables.pth +2 -2
- DQN-FlappyBird-v0/system_info.txt +6 -6
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
DQN-FlappyBird-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7654eb161a7bbd0bd731da2f626ef61ff7bbc2fe99dacd78b7dcfd0c105da1fa
|
3 |
+
size 108501
|
DQN-FlappyBird-v0/data
CHANGED
@@ -5,29 +5,29 @@
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
-
"__init__": "<function DQNPolicy.__init__ at
|
9 |
-
"_build": "<function DQNPolicy._build at
|
10 |
-
"make_q_net": "<function DQNPolicy.make_q_net at
|
11 |
-
"forward": "<function DQNPolicy.forward at
|
12 |
-
"_predict": "<function DQNPolicy._predict at
|
13 |
-
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at
|
14 |
-
"set_training_mode": "<function DQNPolicy.set_training_mode at
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
-
"_abc_impl": "<_abc._abc_data object at
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
"policy_kwargs": {},
|
20 |
-
"num_timesteps":
|
21 |
-
"_total_timesteps":
|
22 |
"_num_timesteps_at_start": 0,
|
23 |
"seed": null,
|
24 |
"action_noise": null,
|
25 |
-
"start_time":
|
26 |
"learning_rate": 0.0001,
|
27 |
"tensorboard_log": null,
|
28 |
"_last_obs": {
|
29 |
":type:": "<class 'numpy.ndarray'>",
|
30 |
-
":serialized:": "
|
31 |
},
|
32 |
"_last_episode_starts": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -35,22 +35,22 @@
|
|
35 |
},
|
36 |
"_last_original_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
-
"_episode_num":
|
41 |
"use_sde": false,
|
42 |
"sde_sample_freq": -1,
|
43 |
"_current_progress_remaining": 0.0,
|
44 |
"_stats_window_size": 100,
|
45 |
"ep_info_buffer": {
|
46 |
":type:": "<class 'collections.deque'>",
|
47 |
-
":serialized:": "
|
48 |
},
|
49 |
"ep_success_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
},
|
53 |
-
"_n_updates":
|
54 |
"observation_space": {
|
55 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
56 |
":serialized:": "gAWVVwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgwAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSwyFlGgZdJRSlIwGX3NoYXBllEsMhZSMA2xvd5RoESiWYAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLDIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sMhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
@@ -68,7 +68,7 @@
|
|
68 |
},
|
69 |
"action_space": {
|
70 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
71 |
-
":serialized:": "
|
72 |
"n": "2",
|
73 |
"start": "0",
|
74 |
"_shape": [],
|
@@ -88,13 +88,13 @@
|
|
88 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
89 |
"__module__": "stable_baselines3.common.buffers",
|
90 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
91 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
92 |
-
"add": "<function ReplayBuffer.add at
|
93 |
-
"sample": "<function ReplayBuffer.sample at
|
94 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
95 |
-
"_maybe_cast_dtype": "<staticmethod
|
96 |
"__abstractmethods__": "frozenset()",
|
97 |
-
"_abc_impl": "<_abc._abc_data object at
|
98 |
},
|
99 |
"replay_buffer_kwargs": {},
|
100 |
"train_freq": {
|
@@ -106,17 +106,17 @@
|
|
106 |
"exploration_final_eps": 0.05,
|
107 |
"exploration_fraction": 0.1,
|
108 |
"target_update_interval": 10000,
|
109 |
-
"_n_calls":
|
110 |
"max_grad_norm": 10,
|
111 |
"exploration_rate": 0.05,
|
112 |
"lr_schedule": {
|
113 |
":type:": "<class 'function'>",
|
114 |
-
":serialized:": "
|
115 |
},
|
116 |
"batch_norm_stats": [],
|
117 |
"batch_norm_stats_target": [],
|
118 |
"exploration_schedule": {
|
119 |
":type:": "<class 'function'>",
|
120 |
-
":serialized:": "
|
121 |
}
|
122 |
}
|
|
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}",
|
7 |
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
8 |
+
"__init__": "<function DQNPolicy.__init__ at 0x7f50c89e5a60>",
|
9 |
+
"_build": "<function DQNPolicy._build at 0x7f50c89e5af0>",
|
10 |
+
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f50c89e5b80>",
|
11 |
+
"forward": "<function DQNPolicy.forward at 0x7f50c89e5c10>",
|
12 |
+
"_predict": "<function DQNPolicy._predict at 0x7f50c89e5ca0>",
|
13 |
+
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f50c89e5d30>",
|
14 |
+
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f50c89e5dc0>",
|
15 |
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f50c89e8d00>"
|
17 |
},
|
18 |
"verbose": 1,
|
19 |
"policy_kwargs": {},
|
20 |
+
"num_timesteps": 100000,
|
21 |
+
"_total_timesteps": 100000.0,
|
22 |
"_num_timesteps_at_start": 0,
|
23 |
"seed": null,
|
24 |
"action_noise": null,
|
25 |
+
"start_time": 1713257541082973744,
|
26 |
"learning_rate": 0.0001,
|
27 |
"tensorboard_log": null,
|
28 |
"_last_obs": {
|
29 |
":type:": "<class 'numpy.ndarray'>",
|
30 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAMa/mpmZmZmZuT9VVVVVVVXFP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="
|
31 |
},
|
32 |
"_last_episode_starts": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
35 |
},
|
36 |
"_last_original_obs": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAQMa/AAAAAAAAAACamZmZmZnJP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="
|
39 |
},
|
40 |
+
"_episode_num": 1025,
|
41 |
"use_sde": false,
|
42 |
"sde_sample_freq": -1,
|
43 |
"_current_progress_remaining": 0.0,
|
44 |
"_stats_window_size": 100,
|
45 |
"ep_info_buffer": {
|
46 |
":type:": "<class 'collections.deque'>",
|
47 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCIAAAAAAACMAWyUS2WMAXSUR0BaUXU6PsAvdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaWB6fJ3gUdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaXlQqI7/5dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaZ2IGhVU/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Babjg2qDK6dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BadR/RVp9JdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baf81baAWjdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bah9Z7ojfOdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baj+ogmqo7dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BalvGZNO/MdX2UKGgGR0AgzMzMzMzNaAdLX2gIR0BanWh7E5yVdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BapCtFKCg9dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaqpfMOf/WdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Basjxb0OEvdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baub92ovSMdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BawVV1fVqfdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BayCTpxFRYdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baz+CXhOxjdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba1w6ltTDPdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba3jKkl/pddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba5xZEDyOJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba71cD8tPIdX2UKGgGR0ArAAAAAAAAaAdLiWgIR0Ba+fKlpGnXdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbA0Aksz2wdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbC4XoC+10dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbEx2St/4JdX2UKGgGR0AjmZmZmZmaaAdLbWgIR0BbG0wN9YwJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbIqIN3GGVdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbKf6sQumKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbMYYm9g4PdX2UKGgGR0AnmZmZmZmaaAdLeGgIR0BbO3VbzK9xdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbRP+OwPiDdX2UKGgGR0AjZmZmZmZmaAdLbGgIR0BbTFDv3JxOdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbUoOx0MgEdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbWzHn2ZiNdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbYoHxBmf5dX2UKGgGR0AgzMzMzMzNaAdLX2gIR0Bbabc9GI9DdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbcoaLn9vTdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbeTSb6P8ydX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbf9+gDifhdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbiwqVhTfjdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbki8BdUsGdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbmoyoGY8ddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BboaJ66asqdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbqhgmZ3LWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbsYTfzjFRdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbt73bmEGrdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbwVGCqZMMdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbye2d/axpdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bb0Ih+vyLAdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bb2c41gpjMdX2UKGgGR0AgzMzMzMzNaAdLX2gIR0Bb4X0btJFtdX2UKGgGR0AizMzMzMzNaAdLaWgIR0Bb6qMNtqHodX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bb8MyJsO5KdX2UKGgGR0AiZmZmZmZmaAdLZ2gIR0Bb+AD3dsSCdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcAAvUSZjQdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcB2qcVgx8dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcD1XFLnLadX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcFgFX7tRfdX2UKGgGR0AgzMzMzMzNaAdLX2gIR0BcHClvZRKpdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcJ6iO/+KkdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcL4+nqFAWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcNi5uqFRHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcPK0D2alUdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcRGNNrTH9dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcTZW7voeQdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcVM7uDzy0dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcW3JLdvbXdX2UKGgGR0AiZmZmZmZmaAdLZ2gIR0BcYwP/aQFLdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bcaa28Zk08dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BccjfWMCLddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcekedTYNBdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcgwOFxn3+dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcihZyMkyDdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BckXezlcQidX2UKGgGR0AjZmZmZmZmaAdLbGgIR0BcmQAZKnNxdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bcobp7kXDWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcqEsBhhH9dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcrtQCSzPbdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bct2F36hxpdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bcw85sCT2WdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcyufVZs9CdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc1L/XGwRodX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc2yqU/wAmdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc4j1PFefJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc6SHM2WIHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc84ZEUj9odX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc/YQBgeA/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdBC0ngHeKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdCzFAE+xGdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdE5Uo8ZDRdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdGy+UQkHEdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdJHKGL1mKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdK8z67/XHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdM/9pAUtadX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdPjv3JxNqdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdRoNd7fHhdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdT/ACW/rTdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdV0b5uZTidX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdXdjPOY6XdWUu"
|
48 |
},
|
49 |
"ep_success_buffer": {
|
50 |
":type:": "<class 'collections.deque'>",
|
51 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
52 |
},
|
53 |
+
"_n_updates": 12500,
|
54 |
"observation_space": {
|
55 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
56 |
":serialized:": "gAWVVwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgwAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSwyFlGgZdJRSlIwGX3NoYXBllEsMhZSMA2xvd5RoESiWYAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLDIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sMhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==",
|
|
|
68 |
},
|
69 |
"action_space": {
|
70 |
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
71 |
+
":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRwRKo4uZI5RSZj+pg5NPwhACMA2luY5SKENs3RocJGY3Z/bd55+cisjZ1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKrE4hQXVidWIu",
|
72 |
"n": "2",
|
73 |
"start": "0",
|
74 |
"_shape": [],
|
|
|
88 |
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
89 |
"__module__": "stable_baselines3.common.buffers",
|
90 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
91 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7f50c89c80d0>",
|
92 |
+
"add": "<function ReplayBuffer.add at 0x7f50c89c8160>",
|
93 |
+
"sample": "<function ReplayBuffer.sample at 0x7f50c89c81f0>",
|
94 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f50c89c8280>",
|
95 |
+
"_maybe_cast_dtype": "<staticmethod object at 0x7f50c89c2340>",
|
96 |
"__abstractmethods__": "frozenset()",
|
97 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f50c89c75c0>"
|
98 |
},
|
99 |
"replay_buffer_kwargs": {},
|
100 |
"train_freq": {
|
|
|
106 |
"exploration_final_eps": 0.05,
|
107 |
"exploration_fraction": 0.1,
|
108 |
"target_update_interval": 10000,
|
109 |
+
"_n_calls": 100000,
|
110 |
"max_grad_norm": 10,
|
111 |
"exploration_rate": 0.05,
|
112 |
"lr_schedule": {
|
113 |
":type:": "<class 'function'>",
|
114 |
+
":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
115 |
},
|
116 |
"batch_norm_stats": [],
|
117 |
"batch_norm_stats_target": [],
|
118 |
"exploration_schedule": {
|
119 |
":type:": "<class 'function'>",
|
120 |
+
":serialized:": "gAWVjAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
121 |
}
|
122 |
}
|
DQN-FlappyBird-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:838984d8314193ae497a9031a5f9892e912408ee18cbaa5274a9576147649c59
|
3 |
+
size 46240
|
DQN-FlappyBird-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7086f340cbe00697c7cf4505e5144dcd49c4561dff27628b475d56235f0cfccf
|
3 |
+
size 45362
|
DQN-FlappyBird-v0/pytorch_variables.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
DQN-FlappyBird-v0/system_info.txt
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
-
- OS: Linux-5.15.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 2.1.0
|
4 |
-
- PyTorch: 2.0
|
5 |
- GPU Enabled: False
|
6 |
-
- Numpy: 1.
|
7 |
-
- Cloudpickle:
|
8 |
-
- Gymnasium: 0.
|
9 |
- OpenAI Gym: 0.26.2
|
|
|
1 |
+
- OS: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024
|
2 |
+
- Python: 3.9.18
|
3 |
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cpu
|
5 |
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.1
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
- OpenAI Gym: 0.26.2
|
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: FlappyBird-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: 9.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: FlappyBird-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 9.00 +/- 0.00
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7fdebe34f0a0>", "_build": "<function DQNPolicy._build at 0x7fdebe34f130>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7fdebe34f1c0>", "forward": "<function DQNPolicy.forward at 0x7fdebe34f250>", "_predict": "<function DQNPolicy._predict at 0x7fdebe34f2e0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7fdebe34f370>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7fdebe34f400>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdebe35aec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 200000, "_total_timesteps": 200000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699176789835401289, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAABzHcRzHceA/AAAAAACAzD8AAAAAAMDaPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAALK/mpmZmZmZub/e3d3d3d3NP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAADmO4ziO4+A/AAAAAACAzD8AAAAAAMDaPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAgLG/mpmZmZmZyb8RERERERHRP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="}, "_episode_num": 1990, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCIAAAAAAACMAWyUS2WMAXSUR0BqEht78ejmdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqFjmuDBdldX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqGme18b71dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqINqYZ2pydX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqJj5wfhdddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqLl2FFlTWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqMcYVIqb0dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqNpC+lCTmdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqPAMQVbiZdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqP9BBzFMqdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqRO3azu4PdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqTI6QvHtGdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqUMfNiYsvdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqVR5iVjZtdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqWSm2sq8UdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqXSfapPykdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqYim4y44IdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqZuAqd6LPdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqa1ARkEs8dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqcFvVEuxsdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqdWHSF49pdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqeS6xxDLKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqfXY4ACGOdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqgih6By0bdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqhpqfvnbJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqiiyjYZl4dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqjltTDO1OdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqkfhS9/SZdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqlWR/3FkydX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqmgo/iYLLdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqnXE/B3zMdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqo8jZ+QU6dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqqP029+PSdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqreXPZ7HAdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqsVSZSeiBdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqtdf9gnc+dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BquaXfIjnndX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqwAHTqjagdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqx4ht+CsfdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bqyu+IuXeFdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BqzzyhBZ6ldX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq1Q3974SIdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq2mYrrgO0dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq3tcdHUc5dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq4nX2/SH/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq5wkPczqKdX2UKGgGR0ArAAAAAAAAaAdLiWgIR0Bq7EtCiRGMdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq8QOQQtjDdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq9Wx0MgEEdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq+dhsqJ/HdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq+96ol2NedX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bq/ffdhy80dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrAPLxI8QqdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrA/3xnWaudX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrB0w5/9YPdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrCn2wmmcfdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrDdTLns9kdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrERtxdY4idX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrFDkuHvc8dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrFu+GoJiRdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrGk9KVY6odX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrHc2Jiy6ddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrIL5IpYs/dX2UKGgGR0ArAAAAAAAAaAdLiWgIR0BrJRjFyaNNdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrKNe+mFajdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrLBxDLKV6dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrMLeqJdjYdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrND8DSw4bdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrN4FA3T/idX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrOsjcEeQudX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrPZF1B+nZdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrQLILgGbDdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrQ8d7v5P/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrSEIHC4z8dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrTQJu2qkudX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrU44CIUJwdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrWQ5ggHNYdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrXgkPczqKdX2UKGgGR0AmMzMzMzMzaAdLcWgIR0BrYv7FbVz7dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrZ3a37UG3dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrbX9vS+g2dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrcT8+A3DOdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brdh9iMHbAdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrelqUNayKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrfnsHB1s+dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrhBOrQw9JdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrihjhDPWydX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brj8ifQKKHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brlac3EQ5FdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrmkIcBEKFdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brn2Zy+6AfdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrogFotcv/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrpiYkVvdedX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brq1zKcNH6dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brr+OEM9bHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Brtx4+r2g4dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bru4d+5OJtdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrwFvbXYlIdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BrxZ4QjD8+dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bryop8WsRydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 37500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVVwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgwAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSwyFlGgZdJRSlIwGX3NoYXBllEsMhZSMA2xvd5RoESiWYAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLDIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sMhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False]", "_shape": [12], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVowEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooR+O1Q77UDIBubUs9pH52dngCMA2luY5SKEUHm0DsYddS8sPweZSc+R6UAdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSn4/DVV1YnViLg==", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7fdebe33f760>", "add": "<function ReplayBuffer.add at 0x7fdebe33f7f0>", "sample": "<function ReplayBuffer.sample at 0x7fdebe33f880>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7fdebe33f910>", "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fdebe33f9a0>)>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fdebe340bc0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 200000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVAwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxoL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVowMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyhkAXwAGACIAWsEcgiIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAlE5LAYaUKYwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjGgvaG9tZS9uc2FuZ2hpL3NhbmRib3gvYXByZXNzL2RybC0yZWQvdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS3FDBgwBBAEYApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaC9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "False", "Numpy": "1.25.1", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__annotations__": "{'q_net': <class 'stable_baselines3.dqn.policies.QNetwork'>, 'q_net_target': <class 'stable_baselines3.dqn.policies.QNetwork'>}", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f50c89e5a60>", "_build": "<function DQNPolicy._build at 0x7f50c89e5af0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f50c89e5b80>", "forward": "<function DQNPolicy.forward at 0x7f50c89e5c10>", "_predict": "<function DQNPolicy._predict at 0x7f50c89e5ca0>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f50c89e5d30>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f50c89e5dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f50c89e8d00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 100000, "_total_timesteps": 100000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713257541082973744, "learning_rate": 0.0001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAMa/mpmZmZmZuT9VVVVVVVXFP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAAPA/AAAAAAAAAAAAAAAAAADwPwAAAAAAQMa/AAAAAAAAAACamZmZmZnJP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsMhpSMAUOUdJRSlC4="}, "_episode_num": 1025, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCIAAAAAAACMAWyUS2WMAXSUR0BaUXU6PsAvdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaWB6fJ3gUdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaXlQqI7/5dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaZ2IGhVU/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Babjg2qDK6dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BadR/RVp9JdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baf81baAWjdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bah9Z7ojfOdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baj+ogmqo7dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BalvGZNO/MdX2UKGgGR0AgzMzMzMzNaAdLX2gIR0BanWh7E5yVdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BapCtFKCg9dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BaqpfMOf/WdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Basjxb0OEvdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baub92ovSMdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BawVV1fVqfdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BayCTpxFRYdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Baz+CXhOxjdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba1w6ltTDPdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba3jKkl/pddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba5xZEDyOJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Ba71cD8tPIdX2UKGgGR0ArAAAAAAAAaAdLiWgIR0Ba+fKlpGnXdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbA0Aksz2wdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbC4XoC+10dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbEx2St/4JdX2UKGgGR0AjmZmZmZmaaAdLbWgIR0BbG0wN9YwJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbIqIN3GGVdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbKf6sQumKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbMYYm9g4PdX2UKGgGR0AnmZmZmZmaaAdLeGgIR0BbO3VbzK9xdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbRP+OwPiDdX2UKGgGR0AjZmZmZmZmaAdLbGgIR0BbTFDv3JxOdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbUoOx0MgEdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbWzHn2ZiNdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbYoHxBmf5dX2UKGgGR0AgzMzMzMzNaAdLX2gIR0Bbabc9GI9DdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbcoaLn9vTdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbeTSb6P8ydX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbf9+gDifhdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbiwqVhTfjdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbki8BdUsGdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbmoyoGY8ddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BboaJ66asqdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbqhgmZ3LWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbsYTfzjFRdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbt73bmEGrdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BbwVGCqZMMdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bbye2d/axpdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bb0Ih+vyLAdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bb2c41gpjMdX2UKGgGR0AgzMzMzMzNaAdLX2gIR0Bb4X0btJFtdX2UKGgGR0AizMzMzMzNaAdLaWgIR0Bb6qMNtqHodX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bb8MyJsO5KdX2UKGgGR0AiZmZmZmZmaAdLZ2gIR0Bb+AD3dsSCdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcAAvUSZjQdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcB2qcVgx8dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcD1XFLnLadX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcFgFX7tRfdX2UKGgGR0AgzMzMzMzNaAdLX2gIR0BcHClvZRKpdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcJ6iO/+KkdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcL4+nqFAWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcNi5uqFRHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcPK0D2alUdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcRGNNrTH9dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcTZW7voeQdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcVM7uDzy0dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcW3JLdvbXdX2UKGgGR0AiZmZmZmZmaAdLZ2gIR0BcYwP/aQFLdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bcaa28Zk08dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BccjfWMCLddX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcekedTYNBdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcgwOFxn3+dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcihZyMkyDdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BckXezlcQidX2UKGgGR0AjZmZmZmZmaAdLbGgIR0BcmQAZKnNxdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bcobp7kXDWdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcqEsBhhH9dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcrtQCSzPbdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bct2F36hxpdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bcw85sCT2WdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BcyufVZs9CdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc1L/XGwRodX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc2yqU/wAmdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc4j1PFefJdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc6SHM2WIHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc84ZEUj9odX2UKGgGR0AiAAAAAAAAaAdLZWgIR0Bc/YQBgeA/dX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdBC0ngHeKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdCzFAE+xGdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdE5Uo8ZDRdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdGy+UQkHEdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdJHKGL1mKdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdK8z67/XHdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdM/9pAUtadX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdPjv3JxNqdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdRoNd7fHhdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdT/ACW/rTdX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdV0b5uZTidX2UKGgGR0AiAAAAAAAAaAdLZWgIR0BdXdjPOY6XdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVVwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLDIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgwAAAAAAAAAAAAAAAAAAAAAAAAAlGgVSwyFlGgZdJRSlIwGX3NoYXBllEsMhZSMA2xvd5RoESiWYAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P+UaAtLDIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwf5RoC0sMhZRoGXSUUpSMCGxvd19yZXBylIwELWluZpSMCWhpZ2hfcmVwcpSMA2luZpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "bounded_below": "[False False False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False]", "_shape": [12], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf]", "low_repr": "-inf", "high_repr": "inf", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWVogEAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoG4wUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoJooRwRKo4uZI5RSZj+pg5NPwhACMA2luY5SKENs3RocJGY3Z/bd55+cisjZ1jApoYXNfdWludDMylEsBjAh1aW50ZWdlcpRKrE4hQXVidWIu", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f50c89c80d0>", "add": "<function ReplayBuffer.add at 0x7f50c89c8160>", "sample": "<function ReplayBuffer.sample at 0x7f50c89c81f0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f50c89c8280>", "_maybe_cast_dtype": "<staticmethod object at 0x7f50c89c2340>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f50c89c75c0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 100000, "max_grad_norm": 10, "exploration_rate": 0.05, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV6AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4NDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMaS9ob21lL25zYW5naGkvc2FuZGJveC9hcHJlc3MvZHJsLTJlZC92ZW52MzkvbGliL3B5dGhvbjMuOS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPxo24uscQy2FlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVjAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcUMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxpL2hvbWUvbnNhbmdoaS9zYW5kYm94L2FwcmVzcy9kcmwtMmVkL3ZlbnYzOS9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoI32UfZQoaBhoDYwMX19xdWFsbmFtZV9flIwbZ2V0X2xpbmVhcl9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKGgKjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC51jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/qZmZmZmZmoWUUpRoNkc/uZmZmZmZmoWUUpRoNkc/8AAAAAAAAIWUUpSHlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Jan 11 04:09:03 UTC 2024", "Python": "3.9.18", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.1", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 9.
|
|
|
1 |
+
{"mean_reward": 9.000000149011612, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-16T14:36:03.570674"}
|