File size: 2,552 Bytes
6272b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ea338
 
6272b6c
 
97ea338
 
 
 
 
 
 
 
 
 
 
6272b6c
 
 
 
 
 
 
 
 
97ea338
 
 
 
 
 
6272b6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97ea338
 
 
 
 
 
 
 
 
 
6272b6c
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
library_name: peft
language:
- en
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- wft
- whisper
- automatic-speech-recognition
- audio
- speech
- generated_from_trainer
datasets:
- ntnu-smil/sandi2025-ds
metrics:
- wer
model-index:
- name: whisper-large-v3-sandi-train-dev-1
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: ntnu-smil/sandi2025-ds
      type: ntnu-smil/sandi2025-ds
    metrics:
    - type: wer
      value: 80.77741112626394
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-large-v3-sandi-train-dev-1

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/sandi2025-ds dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0265
- Wer: 80.7774
- Cer: 205.4415
- Decode Runtime: 296.9575
- Wer Runtime: 0.2339
- Cer Runtime: 0.5476

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 1024
- optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 28

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     | Cer      | Decode Runtime | Wer Runtime | Cer Runtime |
|:-------------:|:------:|:----:|:---------------:|:-------:|:--------:|:--------------:|:-----------:|:-----------:|
| 1.9021        | 1.0357 | 7    | 1.3669          | 70.9647 | 206.0000 | 293.2787       | 0.2383      | 0.5705      |
| 1.248         | 2.0714 | 14   | 1.1785          | 90.1350 | 223.9722 | 301.9501       | 0.2377      | 0.5710      |
| 1.0696        | 3.1071 | 21   | 1.0601          | 84.5443 | 211.8357 | 295.8525       | 0.2329      | 0.5515      |
| 1.0339        | 4.1429 | 28   | 1.0265          | 80.7774 | 205.4415 | 296.9575       | 0.2339      | 0.5476      |


### Framework versions

- PEFT 0.15.1
- Transformers 4.50.3
- Pytorch 2.1.0+cu118
- Datasets 3.5.0
- Tokenizers 0.21.1