--- library_name: peft license: apache-2.0 base_model: unsloth/SmolLM2-360M-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 76418eee-6141-4dea-adfd-e8cb5b78c7df results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/SmolLM2-360M-Instruct bf16: true chat_template: llama3 dataloader_num_workers: 24 dataset_prepared_path: null datasets: - data_files: - 43b60605f834a7c6_train_data.json ds_type: json format: custom path: /workspace/input_data/43b60605f834a7c6_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 4 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: true hub_model_id: nttx/76418eee-6141-4dea-adfd-e8cb5b78c7df hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 50 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2000 micro_batch_size: 4 mlflow_experiment_name: /tmp/43b60605f834a7c6_train_data.json model_type: AutoModelForCausalLM num_epochs: 10 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 saves_per_epoch: null sequence_len: 512 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c364105e-68ea-45f9-ab5b-e5c55ae82d05 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c364105e-68ea-45f9-ab5b-e5c55ae82d05 warmup_steps: 100 weight_decay: 0.1 xformers_attention: null ```

# 76418eee-6141-4dea-adfd-e8cb5b78c7df This model is a fine-tuned version of [unsloth/SmolLM2-360M-Instruct](https://huggingface.co/unsloth/SmolLM2-360M-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0012 | 1 | 2.5271 | | 1.131 | 0.2421 | 200 | 1.1082 | | 1.0255 | 0.4843 | 400 | 1.0291 | | 1.0294 | 0.7264 | 600 | 0.9636 | | 0.9703 | 0.9685 | 800 | 0.9216 | | 0.873 | 1.2107 | 1000 | 0.8905 | | 0.8964 | 1.4528 | 1200 | 0.8720 | | 0.8764 | 1.6949 | 1400 | 0.8536 | | 0.838 | 1.9370 | 1600 | 0.8383 | | 0.8172 | 2.1792 | 1800 | 0.8344 | | 0.7728 | 2.4213 | 2000 | 0.8370 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1