--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: c616b2eb-816e-432d-b1e2-4d58d7d929da results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: true chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 634f0f12aca7b9a2_train_data.json ds_type: json format: custom path: /workspace/input_data/634f0f12aca7b9a2_train_data.json type: field_instruction: input field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 8 eval_max_new_tokens: 128 eval_steps: 300 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/c616b2eb-816e-432d-b1e2-4d58d7d929da hub_repo: null hub_strategy: end hub_token: null learning_rate: 3e-5 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 3000 micro_batch_size: 8 mlflow_experiment_name: /tmp/634f0f12aca7b9a2_train_data.json model_type: AutoModelForCausalLM num_epochs: 100 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 300 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: c06b0827-5e7d-48ee-8b16-5f37d3ed9abf wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: c06b0827-5e7d-48ee-8b16-5f37d3ed9abf warmup_steps: 50 weight_decay: 0.1 xformers_attention: null ```

# c616b2eb-816e-432d-b1e2-4d58d7d929da This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8270 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 3000 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0013 | 1 | 3.3130 | | 12.7621 | 0.3984 | 300 | 3.0850 | | 12.5797 | 0.7968 | 600 | 2.9910 | | 12.177 | 1.1952 | 900 | 2.9410 | | 12.057 | 1.5936 | 1200 | 2.9013 | | 11.5501 | 1.9920 | 1500 | 2.8809 | | 11.8135 | 2.3904 | 1800 | 2.8527 | | 11.6053 | 2.7888 | 2100 | 2.8468 | | 11.4575 | 3.1873 | 2400 | 2.8342 | | 11.4659 | 3.5857 | 2700 | 2.8281 | | 11.9571 | 3.9841 | 3000 | 2.8270 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1