--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-160m tags: - axolotl - generated_from_trainer model-index: - name: e1137da5-d393-4ed5-93a7-2227cd97c54c results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-160m bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - 3cd429aa92a7467a_train_data.json ds_type: json format: custom path: /workspace/input_data/3cd429aa92a7467a_train_data.json type: field_instruction: instruction field_output: response format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto do_eval: true early_stopping_patience: 3 eval_batch_size: 8 eval_max_new_tokens: 128 eval_steps: 150 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: true hub_model_id: nttx/e1137da5-d393-4ed5-93a7-2227cd97c54c hub_repo: null hub_strategy: end hub_token: null learning_rate: 3e-5 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 10 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1500 micro_batch_size: 8 mlflow_experiment_name: /tmp/3cd429aa92a7467a_train_data.json model_type: AutoModelForCausalLM num_epochs: 15 optim_args: adam_beta1: 0.9 adam_beta2: 0.999 adam_epsilon: 1e-8 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: false resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 150 saves_per_epoch: null sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 62c135b7-8472-4121-bd91-09a2c16c46be wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 62c135b7-8472-4121-bd91-09a2c16c46be warmup_steps: 50 weight_decay: 0.1 xformers_attention: null ```

# e1137da5-d393-4ed5-93a7-2227cd97c54c This model is a fine-tuned version of [EleutherAI/pythia-160m](https://huggingface.co/EleutherAI/pythia-160m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.6498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.999,adam_epsilon=1e-8 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 50 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0004 | 1 | 2.8632 | | 7.6309 | 0.0594 | 150 | 2.7300 | | 7.6888 | 0.1188 | 300 | 2.7534 | | 7.1831 | 0.1782 | 450 | 2.7060 | | 7.3785 | 0.2376 | 600 | 2.7084 | | 7.351 | 0.2970 | 750 | 2.6926 | | 6.9755 | 0.3564 | 900 | 2.6618 | | 7.4723 | 0.4158 | 1050 | 2.6380 | | 6.9795 | 0.4752 | 1200 | 2.6514 | | 6.8663 | 0.5345 | 1350 | 2.6419 | | 6.9371 | 0.5939 | 1500 | 2.6498 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1