Update README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,19 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
|
|
|
|
|
5 |
<div style="display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px;">
|
6 |
<div style="flex: 1; min-width: 200px; background: white; border-radius: 8px; padding: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
7 |
<h4 style="margin-top: 0; color: #5f6368;">π§βπ» Curated by</h4>
|
@@ -17,76 +29,19 @@ license: mit
|
|
17 |
</div>
|
18 |
</div>
|
19 |
|
20 |
-
|
21 |
-
<h2 style="margin-top: 0;">π Model Architecture</h2>
|
22 |
-
<div style="background: white; border-radius: 8px; padding: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
23 |
-
<h3 style="margin-top: 0;">Vision Transformer (ViT) with LoRA for Spectrogram Regression</h3>
|
24 |
-
|
25 |
-
<div style="margin-bottom: 15px;">
|
26 |
-
<h4 style="margin-bottom: 10px;">Fine-Tuning Details</h4>
|
27 |
-
<table style="width: 100%; border-collapse: collapse;">
|
28 |
-
<tr>
|
29 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee; width: 30%;"><strong>Framework</strong></td>
|
30 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;">PyTorch</td>
|
31 |
-
</tr>
|
32 |
-
<tr>
|
33 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><strong>Architecture</strong></td>
|
34 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;">Pre-trained Vision Transformer (ViT)</td>
|
35 |
-
</tr>
|
36 |
-
<tr>
|
37 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><strong>Adaptation Method</strong></td>
|
38 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;">LoRA (Low-Rank Adaptation)</td>
|
39 |
-
</tr>
|
40 |
-
<tr>
|
41 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><strong>Task</strong></td>
|
42 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;">Regression on time-frequency representations</td>
|
43 |
-
</tr>
|
44 |
-
<tr>
|
45 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><strong>Target Variables</strong></td>
|
46 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;">
|
47 |
-
1. Chirp start time (ms)<br>
|
48 |
-
2. Start frequency (kHz)<br>
|
49 |
-
3. End frequency (kHz)
|
50 |
-
</td>
|
51 |
-
</tr>
|
52 |
-
<tr>
|
53 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><strong>Training Protocol</strong></td>
|
54 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;">
|
55 |
-
β’ Automatic Mixed Precision (AMP)<br>
|
56 |
-
β’ Early stopping<br>
|
57 |
-
β’ Learning Rate scheduling
|
58 |
-
</td>
|
59 |
-
</tr>
|
60 |
-
<tr>
|
61 |
-
<td style="padding: 8px;"><strong>Output</strong></td>
|
62 |
-
<td style="padding: 8px;">Quantitative predictions + optional natural language descriptions</td>
|
63 |
-
</tr>
|
64 |
-
</table>
|
65 |
-
</div>
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
<tr>
|
79 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><strong>PyTorch Implementation</strong></td>
|
80 |
-
<td style="padding: 8px; border-bottom: 1px solid #eee;"><a href="https://github.com/nbahador/Train_Spectrogram_Transformer">Implementation GitHub Repository</a></td>
|
81 |
-
</tr>
|
82 |
-
<tr>
|
83 |
-
<td style="padding: 8px;"><strong>Synthetic Chirp Generator</strong></td>
|
84 |
-
<td style="padding: 8px;"><a href="https://github.com/nbahador/chirp_spectrogram_generator">Dataset GitHub Repository</a></td>
|
85 |
-
</tr>
|
86 |
-
</table>
|
87 |
-
</div>
|
88 |
-
</div>
|
89 |
-
</div>
|
90 |
|
91 |
<div style="background: #f8f9fa; border-radius: 8px; padding: 20px; margin-bottom: 20px; border-left: 4px solid #ea4335;">
|
92 |
<h2 style="margin-top: 0;">π Dataset Sources</h2>
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- vision-transformer
|
5 |
+
- spectrogram-analysis
|
6 |
+
- lora
|
7 |
+
- pytorch
|
8 |
+
- regression
|
9 |
+
- bioacoustics
|
10 |
+
widget:
|
11 |
+
- src: https://example.com/sample_spectrogram.jpg
|
12 |
+
task: audio-to-audio
|
13 |
---
|
14 |
|
15 |
+
# Vision Transformer (ViT) with LoRA for Spectrogram Regression
|
16 |
+
|
17 |
<div style="display: flex; flex-wrap: wrap; gap: 15px; margin-top: 15px;">
|
18 |
<div style="flex: 1; min-width: 200px; background: white; border-radius: 8px; padding: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
|
19 |
<h4 style="margin-top: 0; color: #5f6368;">π§βπ» Curated by</h4>
|
|
|
29 |
</div>
|
30 |
</div>
|
31 |
|
32 |
+
## Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
This is a Vision Transformer (ViT) model fine-tuned using Low-Rank Adaptation (LoRA) for regression tasks on spectrogram data. The model predicts three key parameters of chirp signals:
|
35 |
+
1. Chirp start time (ms)
|
36 |
+
2. Start frequency (kHz)
|
37 |
+
3. End frequency (kHz)
|
38 |
+
|
39 |
+
### Architecture
|
40 |
+
|
41 |
+
- **Base Model**: Pre-trained Vision Transformer (ViT)
|
42 |
+
- **Adaptation Method**: LoRA (Low-Rank Adaptation)
|
43 |
+
- **Framework**: PyTorch
|
44 |
+
- **Task**: Regression on time-frequency representations
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
<div style="background: #f8f9fa; border-radius: 8px; padding: 20px; margin-bottom: 20px; border-left: 4px solid #ea4335;">
|
47 |
<h2 style="margin-top: 0;">π Dataset Sources</h2>
|